skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Teams to Teamness: Future Directions in the Science of Team Cognition
Objective We review the current state-of-the-art in team cognition research, but more importantly describe the limitations of existing theories, laboratory paradigms, and measures considering the increasing complexities of modern teams and the study of team cognition. Background Research on, and applications of, team cognition has led to theories, data, and measures over the last several decades. Method This article is based on research questions generated in a spring 2022 seminar on team cognition at Arizona State University led by the first author. Results Future research directions are proposed for extending the conceptualization of teams and team cognition by examining dimensions of teamness; extending laboratory paradigms to attain more realistic teaming, including nonhuman teammates; and advancing measures of team cognition in a direction such that data can be collected unobtrusively, in real time, and automatically. Conclusion The future of team cognition is one of the new discoveries, new research paradigms, and new measures. Application Extending the concepts of teams and team cognition can also extend the potential applications of these concepts.  more » « less
Award ID(s):
1828010
PAR ID:
10432729
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
0
Issue:
0
ISSN:
0018-7208
Page Range / eLocation ID:
001872082311624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oshima, J; Chen, B; Vogel, F; Järvelä, J (Ed.)
    Accounting neglect of intervention reasoning in CSCL research, we propose a new process model for team-based diagnostic and intervention reasoning in acute care, focusing on interactions among diagnostic activities (DAs), intervention activities (IAs), and collaborative activities (CAs) such as joint information processing, coordination, and communication. Using epistemic network analysis, we analyzed data from a VR-based cardiac arrest simulation to validate this model by comparing expert- and novice-led teams. As expected, expert-led teams demonstrated faster, more cohesive transitions between DAs and IAs, with a streamlined, linear CA pattern, while novice-led teams exhibited slower, fragmented transitions with cyclical CA patterns. These findings support the model’s potential to capture expertise-driven coordination and efficiency in high-stakes settings. Future research may expand this model across diverse team compositions and problem contexts. By refining understanding of acute care team dynamics, this model paves the way for instructional strategies enhancing coordination and performance in collaborative problem solving. 
    more » « less
  2. Cyber attackers commonly operate in teams, which may process information collectively and thus, may be best understood when the team is treated as the unit of analysis. Future research in Oppositional Human Factors (OHF) should consider the impact of team-influencing and team-level biases and the impact that defensive interventions have on team cognition in general. Existing measurement approaches using team interactions may be well suited for studying red teams, and how OHF interventions impact cyber attackers. 
    more » « less
  3. In this paper we propose a new model for teamwork that integrates team cognition, collective intelligence, and artificial intelligence. We do this by first characterizing what sets team cognition and collectively intelligence apart, and then reviewing the literature on “superforecasting” and the ability for effectively coordinated teams to outperform predictions by large groups. Lastly, we delve into the ways in which teamwork can be enhanced by artificial intelligence through our model, finally highlighting the many areas of research worth exploring through interdisciplinary efforts. 
    more » « less
  4. Abstract As the need to tackle complex clinical and societal problems rises, researchers are increasingly taking on a translational approach. This approach, which seeks to integrate theories, methodologies, and frameworks from various disciplines across a team of researchers, places emphasis on translation of findings in order to offer practical solutions to real-world problems. While translational research leads to a number of positive outcomes, there are also a multitude of barriers to conducting effective team science, such as effective coordination and communication across the organizational, disciplinary, and even geographic boundaries of science teams. Given these barriers to success, there is a significant need to establish team interventions that increase science team effectiveness as translational research becomes the new face of science. This review is intended to provide translational scientists with an understanding of barriers to effective team science and equip them with the necessary tools to overcome such barriers. We provide an overview of translational science teams, discuss barriers to science team effectiveness, demonstrate the lacking state of current interventions, and present recommendations for improving interventions in science teams by applying best practices from the teams and groups literature across the four phases of transdisciplinary research. 
    more » « less
  5. There is a critical nationwide shortage of IT professionals as well as of scientists and engineers with high-performance computing (HPC) and big data related advanced computing skills. Simultaneously, the technology is growing in complexity and sophistication, which has led to the use of multi-disciplinary teams with members from a broad range of home domains everywhere in industry, government, and academia. Moreover, a lot of the vital team collaborations take will place virtually using a variety of software platforms now and in the future. We report here on experiences with preparing undergraduate and graduate students for these career opportunities in several contexts, from regular semester classes, an undergraduate summer research program, to an advanced graduate student CyberTraining program. All these programs are conducted fully online and leveraged concepts of flipped classrooms, recorded lectures, team-based and active learning, regular oral presentations, and more to ensure student engagement and lasting learning. 
    more » « less