skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: NMPC-LBF: Nonlinear MPC with Learned Barrier Function for Decentralized Safe Navigation of Multiple Robots in Unknown Environments
In this paper, we present a decentralized control approach based on a Nonlinear Model Predictive Control (NMPC) method that employs barrier certificates for safe navigation of multiple nonholonomic wheeled mobile robots in unknown environments with static and/or dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF. Since each robot does not have a priori knowledge about the obstacles and other robots, we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the Barrier Function (BF) only from the robot's LiDAR and odometry measurements. The DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different scenarios. The implementation results show the effectiveness of the NMPC-LBF method at ensuring safe navigation of the robots.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
10297 to 10303
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When robots operate in real-world off-road environments with unstructured terrains, the ability to adapt their navigational policy is critical for effective and safe navigation. However, off-road terrains introduce several challenges to robot navigation, including dynamic obstacles and terrain uncertainty, leading to inefficient traversal or navigation failures. To address these challenges, we introduce a novel approach for adaptation by negotiation that enables a ground robot to adjust its navigational behaviors through a negotiation process. Our approach first learns prediction models for various navigational policies to function as a terrain-aware joint local controller and planner. Then, through a new negotiation process, our approach learns from various policies' interactions with the environment to agree on the optimal combination of policies in an online fashion to adapt robot navigation to unstructured off-road terrains on the fly. Additionally, we implement a new optimization algorithm that offers the optimal solution for robot negotiation in real-time during execution. Experimental results have validated that our method for adaptation by negotiation outperforms previous methods for robot navigation, especially over unseen and uncertain dynamic terrains. 
    more » « less
  2. In this paper, we develop a novel and safe control design approach that takes demonstrations provided by a human teacher to enable a robot to accomplish complex manipulation scenarios in dynamic environments. First, an overall task is divided into multiple simpler subtasks that are more appropriate for learning and control objectives. Then, by collecting human demonstrations, the subtasks that require robot movement are modeled by probabilistic movement primitives (ProMPs). We also study two strategies for modifying the ProMPs to avoid collisions with environmental obstacles. Finally, we introduce a rule-base control technique by utilizing a finite-state machine along with a unique means of control design for ProMPs. For the ProMP controller, we propose control barrier and Lyapunov functions to guide the system along a trajectory within the distribution defined by a ProMP while guaranteeing that the system state never leaves more than a desired distance from the distribution mean. This allows for better performance on nonlinear systems and offers solid stability and known bounds on the system state. A series of simulations and experimental studies demonstrate the efficacy of our approach and show that it can run in real time. Note to Practitioners —This paper is motivated by the need to create a teach-by-demonstration framework that captures the strengths of movement primitives and verifiable, safe control. We provide a framework that learns safe control laws from a probability distribution of robot trajectories through the use of advanced nonlinear control that incorporates safety constraints. Typically, such distributions are stochastic, making it difficult to offer any guarantees on safe operation. Our approach ensures that the distribution of allowed robot trajectories is within an envelope of safety and allows for robust operation of a robot. Furthermore, using our framework various probability distributions can be combined to represent complex scenarios in the environment. It will benefit practitioners by making it substantially easier to test and deploy accurate, efficient, and safe robots in complex real-world scenarios. The approach is currently limited to scenarios involving static obstacles, with dynamic obstacle avoidance an avenue of future effort. 
    more » « less
  3. For many types of robots, avoiding obstacles is necessary to prevent damage to the robot and environment. As a result, obstacle avoidance has historically been an im- portant problem in robot path planning and control. Soft robots represent a paradigm shift with respect to obstacle avoidance because their low mass and compliant bodies can make collisions with obstacles inherently safe. Here we consider the benefits of intentional obstacle collisions for soft robot navigation. We develop and experimentally verify a model of robot-obstacle interaction for a tip-extending soft robot. Building on the obstacle interaction model, we develop an algorithm to determine the path of a growing robot that takes into account obstacle collisions. We find that obstacle collisions can be beneficial for open-loop navigation of growing robots because the obstacles passively steer the robot, both reducing the uncertainty of the location of the robot and directing the robot to targets that do not lie on a straight path from the starting point. Our work shows that for a robot with predictable and safe interactions with obstacles, target locations in a cluttered, mapped environment can be reached reliably by simply setting the initial trajectory. This has implications for the control and design of robots with minimal active steering. 
    more » « less
  4. Billard, A. ; Asfour, T. ; Khatib, O. (Ed.)
    Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at 
    more » « less
  5. null (Ed.)
    Abstract This work proposes vision-only navigation strategies for an autonomous underwater robot. This approach is a step towards solving the coverage path planning problem in a 3-D environment for surveying underwater structures. Given the challenging conditions of the underwater domain, it is very complicated to obtain accurate state estimates reliably. Consequently, it is a great challenge to extend known path planning or coverage techniques developed for aerial or ground robot controls. In this work, we are investigating a navigation strategy utilizing only vision to assist in covering a complex underwater structure. We propose to use a navigation strategy akin to what a human diver will execute when circumnavigating around a region of interest, in particular when collecting data from a shipwreck. The focus of this article is a step towards enabling the autonomous operation of lightweight robots near underwater wrecks in order to collect data for creating photo-realistic maps and volumetric 3-D models while at the same time avoiding collisions. The proposed method uses convolutional neural networks to learn the control commands based on the visual input. We have demonstrated the feasibility of using a system based only on vision to learn specific strategies of navigation with 80% accuracy on the prediction of control command changes. Experimental results and a detailed overview of the proposed method are discussed. 
    more » « less