skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Kinematically Constrained Kalman Filter for Sensor Fusion in a Wearable Origami Robot
Abstract Sensing for wearable robots is an ongoing challenge, especially given the recent trend of soft and compliant robots. Recently, a wearable origami exoshell has been designed to sense the user’s torso motion and provide mobility assistance. The materials of the exoshell contribute to a lightweight design with compliant joints, which are ideal characteristics for a wearable device. Common sensors are not ideal for the exoshell as they compromise these design characteristics. Rotary encoders are often rigid metal devices that add considerable weight and compromise the flexibility of the joints. Inertial measurement unit sensors are affected by environments with variable electromagnetic fields and therefore not ideal for wearable applications. Hall effect sensors and gyroscopes are utilized as alternative compatible sensors, which introduce their own set of challenges: noisy measurements and drift due to sensor bias. To mitigate this, we designed the Kinematically Constrained Kalman filter for sensor fusion of gyroscopes and Hall effect sensors, with the goal of estimating the human’s torso and robot joint angles. We augmented the states to consider bias related to the torso angle in order to compensate for drift. The forward kinematics of the robot is incorporated into the Kalman filter as state constraints to address the unobservability of the torso angle and its related bias. The proposed algorithm improved the estimation performance of the torso angle and its bias, compared to the individual sensors and the standard Kalman filter, as demonstrated through bench tests and experiments with a human user.  more » « less
Award ID(s):
1828010
PAR ID:
10432753
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASME Letters in Dynamic Systems and Control
Volume:
3
Issue:
1
ISSN:
2689-6117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recursive neural networks can be trained to serve as a memory for robots to perform intelligent behaviors when localization is not available. This paper develops an approach to convert a spatial map, represented as a scalar field, into a trained memory represented by the long short-term memory (LSTM) neural network. The trained memory can be retrieved through sensor measurements collected by robots to achieve intelligent behaviors, such as tracking level curves in the map. Memory retrieval does not require robot locations. The retrieved information is combined with sensor measurements through a Kalman filter enabled by the LSTM (LSTM-KF). Furthermore, a level curve tracking control law is designed. Simulation results show that the LSTM-KF and the control law are effective to generate level curve tracking behaviors for single-robot and multi-robot teams. 
    more » « less
  2. This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances. 
    more » « less
  3. This paper reports on developing a real-time invariant proprioceptive robot state estimation framework called DRIFT. A didactic introduction to invariant Kalman filtering is provided to make this cutting-edge symmetry-preserving approach accessible to a broader range of robotics applications. Furthermore, this work dives into the development of a proprioceptive state estimation framework for dead reckoning that only consumes data from an onboard inertial measurement unit and kinematics of the robot, with two optional modules, a contact estimator and a gyro filter for low-cost robots, enabling a significant capability on a variety of robotics platforms to track the robot's state over long trajectories in the absence of perceptual data. Extensive real-world experiments using a legged robot, an indoor wheeled robot, a field robot, and a full-size vehicle, as well as simulation results with a marine robot, are provided to understand the limits of DRIFT. 
    more » « less
  4. We designed and validated two interfaces for physical human-robot interaction that utilize torso motions for hands-free navigation control of riding or remote mobile robots. The Torso-dynamics Estimation System (TES), which consisted of an instrumented seat (Force Sensing Seat, FSS) and a wearable sensor (inertial measurement unit, IMU), was developed to quantify the translational and rotational motions of the torso, respectively. The FSS was constructed from six uniaxial loadcells to output 3D resultant forces and torques, which were used to compute the translational movement of the 2D center of pressure (COP) under the seated user. Two versions of the FSS (Gen 1.0 and 2.0) with different loadcell layouts, materials, and manufacturing methods were developed to showcase the versatility of the FSS design and construction. Both FSS versions utilized low-cost components and a simple calibration protocol to correct for dimensional inaccuracies. The IMU, attached on the user’s upper chest, used a proprietary algorithm to compute the 3D torso angles without relying heavily on magnetometers to minimize errors from electromagnetic noises. A validation study was performed on eight test subjects (six able-bodied users and two manual wheelchair users with reduced torso range of motion) to validate TES estimations by comparing them to data collected on a research-grade force plate and motion capture system. TES readings displayed high accuracy (average RMSE of 3D forces, 3D torques, 2D COP, and torso angles were well less than maximum limits of 5N, 5Nm, 10mm, and 6˚, respectively). 
    more » « less
  5. In this work, we investigate the problem of level curve tracking in unknown scalar fields using a limited number of mobile robots. We design and implement a long short-term memory (LSTM) enabled control strategy for a mobile sensor network to detect and track desired level curves. Based on the existing work of cooperative Kalman filter, we design an LSTM-enhanced Kalman filter that utilizes the sensor measurements and a sequence of past fields and gradients to estimate the current field value and gradient. We also design an LSTM model to estimate the Hessian of the field. The LSTM-enabled strategy has some benefits such as it can be trained offline on a collection of level curves in known fields prior to deployment, where the trained model will enable the mobile sensor network to track level curves in unknown fields for various applications. Another benefit is that we can train using larger resources to get more accurate models while utilizing a limited number of resources when the mobile sensor network is deployed in production. Simulation results show that this LSTM-enabled control strategy successfully tracks the level curve using a mobile multi-robot sensor network. 
    more » « less