skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Action-Effect Dynamics for Hypothetical Vision-Language Reasoning Task
Actions’ play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform ‘Reasoning about Actions & Change’ (RAC). This has been an important research direction in Artificial Intelligence (AI) in general, but the study of RAC with visual and linguistic inputs is relatively recent. The CLEVR_HYP is one such testbed for hypothetical vision-language reasoning with actions as the key focus. In this work, we propose a novel learning strategy that can improve reasoning about the effects of actions. We implement an encoder-decoder architecture to learn the representation of actions as vectors. We combine the aforementioned encoder-decoder architecture with existing modality parsers and a scene graph question answering model to evaluate our proposed system on the CLEVR_HYP dataset. We conduct thorough experiments to demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.  more » « less
Award ID(s):
1816039
PAR ID:
10432859
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Findings of EMNLP 2022.
Page Range / eLocation ID:
5914–5924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces a new graph neural network architecture for learning solutions of Capacitated Vehicle Routing Problems (CVRP) as policies over graphs. CVRP serves as an important benchmark for a wide range of combinatorial planning problems, which can be adapted to manufacturing, robotics and fleet planning applications. Here, the specific aim is to demonstrate the significant real-time executability and (beyond training) scalability advantages of the new graph learning approach over existing solution methods. While partly drawing motivation from recent graph learning methods that learn to solve CO problems such as multi-Traveling Salesman Problem (mTSP) and VRP, the proposed neural architecture presents a novel encoder-decoder architecture. Here the encoder is based on Capsule networks, which enables better representation of local and global information with permutation invariant node embeddings; and the decoder is based on the Multi-head attention (MHA) mechanism allowing sequential decisions. This architecture is trained using a policy gradient Reinforcement Learning process. The performance of our approach is favorably compared with state-of-the-art learning and non-learning methods for a benchmark suite of Capacitated-VRP (CVRP) problems. A further study on the CVRP with demand uncertainties is conducted to explore how this Capsule-Attention Mechanism architecture can be extended to handle real-world uncertainties by embedding them through the encoder. 
    more » « less
  2. In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs. 
    more » « less
  3. The key idea of current deep learning methods for dense prediction is to apply a model on a regular patch centered on each pixel to make pixel-wise predictions. These methods are limited in the sense that the patches are determined by network architecture instead of learned from data. In this work, we propose the dense transformer networks, which can learn the shapes and sizes of patches from data. The dense transformer networks employ an encoder-decoder architecture, and a pair of dense transformer modules are inserted into each of the encoder and decoder paths. The novelty of this work is that we provide technical solutions for learning the shapes and sizes of patches from data and efficiently restoring the spatial correspondence required for dense prediction. The proposed dense transformer modules are differentiable, thus the entire network can be trained. We apply the proposed networks on biological image segmentation tasks and show superior performance is achieved in comparison to baseline methods. 
    more » « less
  4. Lengauer, Thomas (Ed.)
    Abstract SummaryThis article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder–decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder–decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results. Availability and implementationThe source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED). 
    more » « less
  5. The "deep image prior" proposed by Ulyanov et al. is an intriguing property of neural nets: a convolutional encoder-decoder network can be used as a prior for natural images. The network architecture implicitly introduces a bias; If we train the model to map white noise to a corrupted image, this bias guides the model to fit the true image before fitting the corrupted regions. This paper explores why the deep image prior helps in denoising natural images. We present a novel method to analyze trajectories generated by the deep image prior optimization and demonstrate: (i) convolution layers of the an encoder-decoder decouple the frequency components of the image, learning each at different rates (ii) the model fits lower frequencies first, making early stopping behave as a low pass filter. The experiments study an extension of Cheng et al which showed that at initialization, the deep image prior is equivalent to a stationary Gaussian process. 
    more » « less