Abstract Nuclear star clusters (NSCs), made up of a dense concentration of stars and the compact objects they leave behind, are ubiquitous in the central regions of galaxies surrounding the central supermassive black hole (SMBH). Close interactions between stars and stellar-mass black holes (sBHs) lead to tidal disruption events (TDEs). We uncover an interesting new phenomenon: for a subset of these, the unbound debris (to the sBH) remains bound to the SMBH, accreting at a later time, thus giving rise to a second flare. We compute the rate of such events and find them ranging within 10−6–10−3yr−1gal−1for SMBH mass ≃106–109M⊙. Time delays between the two flares spread over a wide range, from less than a year to hundreds of years. The temporal evolution of the light curves of the second flare can vary between the standardt−5/3power law to much steeper decays, providing a natural explanation for observed light curves in tension with the classical TDE model. Our predictions have implications for learning about NSC properties and calibrating its sBH population. Some double flares may be electromagnetic counterparts to LISA extreme-mass-ratio inspiral sources. Another important implication is the possible existence of TDE-like events in very massive SMBHs, where TDEs are not expected. Such flares can affect spin measurements relying on TDEs in the upper SMBH range.
more »
« less
Searching for ultra-light bosons and constraining black hole spin distributions with stellar tidal disruption events
Abstract Stars that pass close to the supermassive black holes located in the center of galaxies can be disrupted by tidal forces, leading to flares that are observed as bright transient events in sky surveys. The rate for these events to occur depends on the black hole spins, which in turn can be affected by ultra-light bosons due to superradiance. We perform a detailed analysis of these effects and show that searches for stellar tidal disruptions have the potential to uncover the existence of ultra-light bosons. In particular, we find that upcoming stellar tidal disruption rate measurements by the Vera Rubin Observatory’s Legacy Survey of Space and Time can be used to either discover or rule out bosons with masses ranging from 10 −20 to 10 −18 eV. Our analysis also indicates that these measurements may be used to constrain a variety of supermassive black hole spin distributions and determine if close-to maximal spins are preferred.
more »
« less
- Award ID(s):
- 2006839
- PAR ID:
- 10432997
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Extreme tidal disruption events (eTDEs), which occur when a star passes very close to a supermassive black hole, may provide a way to observe a long-sought general relativistic effect: orbits that wind several times around a black hole and then leave. Through general relativistic hydrodynamics simulations, we show that such eTDEs are easily distinguished from most tidal disruptions, in which stars come close, but not so close, to the black hole. Following the stellar orbit, the debris is initially distributed in a crescent, it then turns into a set of tight spirals circling the black hole, which merge into a shell expanding radially outwards. Some mass later falls back toward the black hole, while the remainder is ejected. Internal shocks within the infalling debris power the observed emission. The resulting lightcurve rises rapidly to roughly the Eddington luminosity, maintains this level for between a few weeks and a year (depending on both the stellar mass and the black hole mass), and then drops. Most of its power is in thermal X-rays at a temperature ∼(1–2) × 10 6 K (∼100–200 eV). The debris evolution and observational features of eTDEs are qualitatively different from ordinary TDEs, making eTDEs a new type of TDE. Although eTDEs are relatively rare for lower-mass black holes, most tidal disruptions around higher-mass black holes are extreme. Their detection offers a view of an exotic relativistic phenomenon previously inaccessible.more » « less
-
Abstract Three recent global simulations of tidal disruption events (TDEs) have produced, using different numerical techniques and parameters, very similar pictures of their dynamics. In typical TDEs, after the star is disrupted by a supermassive black hole, the bound portion of the stellar debris follows highly eccentric trajectories, reaching apocenters of several thousand gravitational radii. Only a very small fraction is captured upon returning to the vicinity of the supermassive black hole. Nearly all of the debris returns to the apocenter, where shocks produce a thick irregular cloud on this radial scale and power the optical/UV flare. These simulation results imply that over a few years, the thick cloud settles into an accretion flow responsible for the long-term emission. Despite not being designed to match observations, and without any free parameters, the dynamical picture given by the three simulations aligns well with observations of typical events, correctly predicting the flares’ typical total radiated energy, luminosity, temperature, and emission-line width. On the basis of these predictions, we provide an updated method (TDEmass) to infer the stellar and black hole masses from a flare’s peak luminosity and temperature. This picture also correctly predicts that the luminosity observed years after the flare should be nearly constant. In addition, we show that in a magnitude-limited survey, if the intrinsic rate of TDEs is independent of black hole mass, the detected events will preferentially have black hole masses ∼106.3±0.3M⊙and stellar masses ∼1M⊙.more » « less
-
Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).more » « less
-
Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1 M ⊙ , γ = 5/3 polytrope is disrupted by a 10 6 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t / r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries.more » « less
An official website of the United States government

