skip to main content

Title: Drought- and heatwave-associated compound extremes: A review of hotspots, variables, parameters, drivers, impacts, and analysis frameworks
Droughts and heatwaves are rising concerns with regard to the frequent formation of the compound or concurrent extremes (CEs), which can cause greater havoc than an individual event of a higher magnitude. Recently, they have been frequently detected to form CEs together or with other events (e.g., floods, aridity, and humidity events) concurrently or with spatiotemporal lags. Therefore, this systematic review assesses these CEs by reviewing the following aspects: CE hotspots, events, and variable combinations that form CEs; frequently analyzed CE parameters (e.g., frequency and severity); large-scale modes of climate variability (CV) as drivers alongside the approaches to relate them to CEs; and CE impacts (e.g., yield loss and fire risk) alongside the impact integration approaches from 166 screened publications. Additionally, three varied analysis frameworks of CEs are summarized to highlight the different analysis components of drought- and heatwave-associated CEs, which is the novelty of this study. The analysis frameworks vary with regard to the three major assessment objectives: only CE parameters (event–event), driver association (event–driver), and impacts (event–impact). According to this review, the most frequently reported hotspots of these CEs in global studies are southern Africa, Australia, South America, and Southeast Asia. In regional studies, several vital hotspots (e.g., Iberian Peninsula, Balkans, and Mediterranean Basin) have been reported, some of which have not been mentioned in global studies because they usually report hotspots as broader regions. In addition, different event combinations (e.g., drought and heatwave; and heatwave and stagnation) are analyzed by varying the combination of variables, namely, temperature, precipitation, and their derived indices. Thus, this study presents three major analysis frameworks and components of drought- and heatwave-associated CE analysis for prospective researchers.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions.

    more » « less
  2. Abstract Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts. 
    more » « less
  3. Abstract

    Many of the most dramatic patterns in biological diversity are created by “Perfect Storms” —rare combinations of mutually reinforcing factors that push origination, extinction, or diversity accommodation to extremes. These patterns include the strongest diversification events (e.g. the Cambrian Explosion of animal body plans), the proliferation of hyperdiverse clades (e.g. insects, angiosperms), the richest biodiversity hotspots (e.g. the New World Tropical Montane regions and the ocean's greatest diversity pump, the tropical West Pacific), and the most severe extinction events (e.g. the Big Five mass extinctions of the Phanerozoic). Human impacts on the modern biota are also a Perfect Storm, and both mitigation and restoration strategies should be framed accordingly, drawing on biodiversity's responses to multi-driver processes in the geologic past. This approach necessarily weighs contributing factors, identifying their often non-linear and time-dependent interactions, instead of searching for unitary causes.

    more » « less
  4. Flash droughts develop rapidly (∼1 month timescale) and produce significant ecological, agricultural, and socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flash drought. The drought component was also determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intensification component agreed well with previous flash drought studies, with the overall climatology of rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid drying more often than east of the Rocky Mountains. 
    more » « less
  5. Abstract

    This study synthesizes the current understanding of the hydrological, impact, and adaptation processes underlying drought‐to‐flood events (i.e., consecutive drought and flood events), and how they interact. Based on an analysis of literature and a global assessment of historic cases, we show how drought can affect flood risk and assess under which circumstances drought‐to‐flood interactions can lead to increased or decreased risk. We make a distinction between hydrological, socio‐economic and adaptation processes. Hydrological processes include storage and runoff processes, which both seem to mostly play a role when the drought is a multiyear event and when the flood occurs during the drought. However, which process is dominant when and where, and how this is influenced by human intervention needs further research. Processes related to socio‐economic impacts have been studied less than hydrological processes, but in general, changes in vulnerability seem to play an important role in increasing or decreasing drought‐to‐flood impacts. Additionally, there is evidence of increased water quality problems due to drought‐to‐flood events, when compared to drought or flood events by themselves. Adaptation affects both hydrological (e.g., through groundwater extraction) or socio‐economic (e.g., influencing vulnerability) processes. There are many examples of adaptation, but there is limited evidence of when and where certain processes occur and why. Overall, research on drought‐to‐flood events is scarce. To increase our understanding of drought‐to‐flood events we need more comprehensive studies on the underlying hydrological, socio‐economic, and adaptation processes and their interactions, as well as the circumstances that lead to the dominance of certain processes.

    This article is categorized under:

    Science of Water > Hydrological Processes

    Science of Water > Water Extremes

    more » « less