skip to main content


Title: Drought- and heatwave-associated compound extremes: A review of hotspots, variables, parameters, drivers, impacts, and analysis frameworks
Droughts and heatwaves are rising concerns with regard to the frequent formation of the compound or concurrent extremes (CEs), which can cause greater havoc than an individual event of a higher magnitude. Recently, they have been frequently detected to form CEs together or with other events (e.g., floods, aridity, and humidity events) concurrently or with spatiotemporal lags. Therefore, this systematic review assesses these CEs by reviewing the following aspects: CE hotspots, events, and variable combinations that form CEs; frequently analyzed CE parameters (e.g., frequency and severity); large-scale modes of climate variability (CV) as drivers alongside the approaches to relate them to CEs; and CE impacts (e.g., yield loss and fire risk) alongside the impact integration approaches from 166 screened publications. Additionally, three varied analysis frameworks of CEs are summarized to highlight the different analysis components of drought- and heatwave-associated CEs, which is the novelty of this study. The analysis frameworks vary with regard to the three major assessment objectives: only CE parameters (event–event), driver association (event–driver), and impacts (event–impact). According to this review, the most frequently reported hotspots of these CEs in global studies are southern Africa, Australia, South America, and Southeast Asia. In regional studies, several vital hotspots (e.g., Iberian Peninsula, Balkans, and Mediterranean Basin) have been reported, some of which have not been mentioned in global studies because they usually report hotspots as broader regions. In addition, different event combinations (e.g., drought and heatwave; and heatwave and stagnation) are analyzed by varying the combination of variables, namely, temperature, precipitation, and their derived indices. Thus, this study presents three major analysis frameworks and components of drought- and heatwave-associated CE analysis for prospective researchers.  more » « less
Award ID(s):
1735235
NSF-PAR ID:
10433366
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite major improvements in weather and climate modelling and substantial increases in remotely sensed observations, drought prediction remains a major challenge. After a review of the existing methods, we discuss major research gaps and opportunities to improve drought prediction. We argue that current approaches are top-down, assuming that the process(es) and/or driver(s) are known—i.e. starting with a model and then imposing it on the observed events (reality). With the help of an experiment, we show that there are opportunities to develop bottom-up drought prediction models—i.e. starting from the reality (here, observed events) and searching for model(s) and driver(s) that work. Recent advances in artificial intelligence and machine learning provide significant opportunities for developing bottom-up drought forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning, dynamical simulations, analogue based), we need to shift our attention to robustness of theories and outputs rather than event-based verification. A shift in our focus towards quantifying the stability of uncertainty in drought prediction models, rather than the goodness of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight the advantages of hybrid dynamical and statistical models for improving current drought prediction models. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’. 
    more » « less
  2. Abstract Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts. 
    more » « less
  3. Abstract

    Compound drought and heatwaves can cause significant damage to the environment, economy, and society. In this study, we quantify the spatio‐temporal changes in compound drought and heatwave (CDHW) events by integrating weekly self‐calibrated Palmer Drought Severity Index (sc_PDSI) and daily maximum temperatures during the period 1983 to 2016. Multiple data products are used to examine the robustness of sc_PDSI in the compound event analysis. The results consistently suggest significant increases in drought‐related heatwaves and affected global land area in recent (warmer) periods. Several regions across the globe witnessed rise in CDHW frequency (one to three events/year), duration (2–10 days/year), and severity. This increasing pattern is spatially asymmetric, and greater amplification is observed across the Northern hemisphere due to recent warming. Furthermore, the background aridity influences the spatiotemporal evolution of CDHW events. The results can be applied to minimize the impacts of extreme CDHWs in critical geographical regions.

     
    more » « less
  4. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  5. Episodes of prolonged drought coupled with heat waves (i.e. drought and heat combination) can have a devastating impact on agricultural production and crop yield. It is therefore not surprising that improving tolerance to drought and heat combination has been a major goal for breeders and biotech companies. Although much is known about the physiological and molecular responses of vegetative tissues to a combination of drought and heat stress, less is known about the impact of this stress combination on yield and different yield components. Here, we used a meta‐analysis approach to synthesize results from over 120 published case studies of crop responses to combined drought and heat stress. Our findings reveal that drought and heat stress combination significantly impacts yield by decreasing harvest index, shortening the life cycle of crops, and altering seed number, size and composition. Furthermore, these impacts are more severe when the stress combination is applied during the reproductive stage of plants. We further identify differences in how legumes and cereals respond to the stress combination and reveal that utilizing C3 or C4 metabolism may not provide an advantage to plants during stress combinations. Taken together our study highlights a need to focus future studies, as well as breeding efforts, on crop responses to drought and heat combination at the reproductive stage of different crop species.

     
    more » « less