skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sporogenesis in Physcomitrium patens: Intergenerational collaboration and the development of the spore wall and aperture
Although the evolution of spores was critical to the diversification of plants on land, sporogenesis is incompletely characterized for model plants such as Physcomitrium patens . In this study, the complete process of P. patens sporogenesis is detailed from capsule expansion to mature spore formation, with emphasis on the construction of the complex spore wall and proximal aperture. Both diploid (sporophytic) and haploid (spores) cells contribute to the development and maturation of spores. During capsule expansion, the diploid cells of the capsule, including spore mother cells (SMCs), inner capsule wall layer (spore sac), and columella, contribute a locular fibrillar matrix that contains the machinery and nutrients for spore ontogeny. Nascent spores are enclosed in a second matrix that is surrounded by a thin SMC wall and suspended in the locular material. As they expand and separate, a band of exine is produced external to a thin foundation layer of tripartite lamellae. Dense globules assemble evenly throughout the locule, and these are incorporated progressively onto the spore surface to form the perine external to the exine. On the distal spore surface, the intine forms internally, while the spiny perine ornamentation is assembled. The exine is at least partially extrasporal in origin, while the perine is derived exclusively from outside the spore. Across the proximal surface of the polar spores, an aperture begins formation at the onset of spore development and consists of an expanded intine, an annulus, and a central pad with radiating fibers. This complex aperture is elastic and enables the proximal spore surface to cycle between being compressed (concave) and expanded (rounded). In addition to providing a site for water intake and germination, the elastic aperture is likely involved in desiccation tolerance. Based on the current phylogenies, the ancestral plant spore contained an aperture, exine, intine, and perine. The reductive evolution of liverwort and hornwort spores entailed the loss of perine in both groups and the aperture in liverworts. This research serves as the foundation for comparisons with other plant groups and for future studies of the developmental genetics and evolution of spores across plants.  more » « less
Award ID(s):
1758497
PAR ID:
10433451
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Cell and Developmental Biology
Volume:
11
ISSN:
2296-634X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A robust spore wall was a key requirement for terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components, partly through oxidative processes involving H 2 O 2 . Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on the formation of spore walls in the moss Physcomitrella patens (Hedw.) Bruch, Schimp & W. Gümbel. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea, or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical, and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named “augmented osmolysis” because they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, the walls of exposed spores were more susceptible to alkaline hydrolysis than those of the control spores, and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture, and occasionally, wall shedding. Our data support the involvement of oxidative cross-linking in spore-wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development. 
    more » « less
  2. Abstract Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga.Penium margaritaceumis a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone. 
    more » « less
  3. Abstract Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation. 
    more » « less
  4. The cell wall of a mature pollen grain is a highly specialized, multilayered structure. The outer, sporopollenin-based exine provides protection and support to the pollen grain, while the inner intine, composed primarily of cellulose, is important for pollen germination. The formation of the mature pollen grain wall takes place within the anther with contributions of cell wall material from both the developing pollen grain as well as the surrounding cells of the tapetum. The process of wall development is complex; multiple cell wall polymers are deposited, some transiently, in a controlled sequence of events. Tomato ( Solanum lycopersicum ) is an important agricultural crop, which requires successful fertilization for fruit production as do many other members of the Solanaceae family. Despite the importance of pollen development for tomato, little is known about the detailed pollen gain wall developmental process. Here, we describe the structure of the tomato pollen wall and establish a developmental timeline of its formation. Mature tomato pollen is released from the anther in a dehydrated state and is tricolpate, with three long apertures without overlaying exine from which the pollen tube may emerge. Using histology and immunostaining, we determined the order in which key cell wall polymers were deposited with respect to overall pollen and anther development. Pollen development began in young flower buds when the premeiotic microspore mother cells (MMCs) began losing their cellulose primary cell wall. Following meiosis, the still conjoined microspores progressed to the tetrad stage characterized by a temporary, thick callose wall. Breakdown of the callose wall released the individual early microspores. Exine deposition began with the secretion of the sporopollenin foot layer. At the late microspore stage, exine deposition was completed and the tapetum degenerated. The pollen underwent mitosis to produce bicellular pollen; at which point, intine formation began, continuing through to pollen maturation. The entire cell wall development process was also punctuated by dynamic changes in pectin composition, particularly changes in methyl-esterified and de-methyl-esterified homogalacturonan. 
    more » « less
  5. {"Abstract":["Natural biological materials are formed by self-assembly processes and\n catalyze a myriad of reactions. Here, we report a programmable molecular\n assembly of designed synthetic polymers with engineered Bacillus subtilis\n spores. The bacterial spore-based materials possess modular mechanical and\n functional properties derived from the independent design and assembly of\n synthetic polymers and engineered spores .  We discovered that\n phenylboronic acid (PBA) derivatives form tunable and reversible dynamic\n covalent bonds with the spore surface glycan. Spore labeling was performed\n using fluorescent PBA probes and monitored by fluorescence microscopy and\n spectroscopy. Binding affinities of PBA derivatives to spore surface\n glycan was controlled by aryl substituent effects. On the basis of this\n finding, PBA-functionalized statistical copolymers were synthesized and\n assembled with B. subtilis spores to afford macroscopic materials that\n exhibited programmable stiffness, self-healing, prolonged dry storage, and\n recyclability. These material properties could be examined using shear\n rheology, tensile testing, and NMR experiments.  Integration of engineered\n spores with surface enzymes yielded reusable biocatalytic materials with\n exceptional operational simplicity and high benchtop stability. The\n reaction progress of the biocatalyses could be monitored with fluorescence\n specroscopy and absorption measurements, while spore leakage could be\n monitored by changes in solution turbidity (OD600). The use of bacterial\n spores as an active partner in dynamic covalent crosslinking sets our\n material apart from previous examples and grants control over\n biocontainment as well as the subsequent fate of the spores through\n stimuli-responsive reversal of the crosslink."],"Methods":["All experimental methods are briefly described in the README.md file, and\n fully detailed in the Supporting Information file for the paper article\n "Catalytic materials enabled by a programmable assembly of synthetic\n polymers and engineered bacterial spores"."]} 
    more » « less