Robot-assisted healthcare could help alleviate the shortage of nursing staff in hospitals and is a potential solution to assist with safe patient handling and mobility. In an attempt to off-load some of the physically-demanding tasks and automate mundane duties of overburdened nurses, we have developed the Adaptive Robotic Nursing Assistant (ARNA), which is a custom-built omnidirectional mobile platform with a 6-DoF robotic manipulator and a force sensitive walking handlebar. In this paper, we present a robot-specific neuroadaptive controller (NAC) for ARNA’s mobile base that employs online learning to estimate the robot’s unknown dynamic model and nonlinearities. This control scheme relies on an inner-loop torque controller and features convergence with Lyapunov stability guarantees. The NAC forces the robot to emulate a mechanical system with prescribed admittance characteristics during patient walking exercises and bed moving tasks. The proposed admittance controller is implemented on a model of the robot in a Gazebo-ROS simulation environment, and its effectiveness is investigated in terms of online learning of robot dynamics as well as sensitivity to payload variations.
- Award ID(s):
- 2226165
- NSF-PAR ID:
- 10433566
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 13
- Issue:
- 7
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 4576
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)
Abstract -
null (Ed.)This paper presents a novel risk vector-based near miss prediction and obstacle avoidance method. The proposed method uses the sensor readings about the pose of the other obstacles to infer their motion model (velocity and heading) and, accordingly, adapt the risk assessment and take corrective actions if necessary. Relative vector calculations allow the method to perform in real-time. The algorithm has 1.68 times faster computation performance with less change of motion than other methods and it enables a robot to avoid 25 obstacles in a congested area. Fallback behaviors are also proposed in case of faulty sensors or situation changes. Simulation experiments with parameters inferred from experiments in the ocean with our custom-made robotic boat show the flexibility and adaptability of the proposed method to many obstacles present in the environment. Results highlight more efficient trajectories and comparable safety as other state-of-the-art methods, as well as robustness to failures.more » « less
-
Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm is designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions.more » « less
-
In this paper, we present a decentralized control approach based on a Nonlinear Model Predictive Control (NMPC) method that employs barrier certificates for safe navigation of multiple nonholonomic wheeled mobile robots in unknown environments with static and/or dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF. Since each robot does not have a priori knowledge about the obstacles and other robots, we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the Barrier Function (BF) only from the robot's LiDAR and odometry measurements. The DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different scenarios. The implementation results show the effectiveness of the NMPC-LBF method at ensuring safe navigation of the robots.more » « less
-
Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.