skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Patient–Robot Co-Navigation of Crowded Hospital Environments
Intelligent multi-purpose robotic assistants have the potential to assist nurses with a variety of non-critical tasks, such as object fetching, disinfecting areas, or supporting patient care. This paper focuses on enabling a multi-purpose robot to guide patients while walking. The proposed robotic framework aims at enabling a robot to learn how to navigate a crowded hospital environment while maintaining contact with the patient. Two deep reinforcement learning models are developed; the first model considers only dynamic obstacles (e.g., humans), while the second model considers static and dynamic obstacles in the environment. The models output the robot’s velocity based on the following inputs; the patient’s gait velocity, which is computed based on a leg detection method, spatial and temporal information from the environment, the humans in the scene, and the robot. The proposed models demonstrate promising results. Finally, the model that considers both static and dynamic obstacles is successfully deployed in the Gazebo simulation environment.  more » « less
Award ID(s):
2226165
PAR ID:
10433566
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Sciences
Volume:
13
Issue:
7
ISSN:
2076-3417
Page Range / eLocation ID:
4576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Robot-assisted healthcare could help alleviate the shortage of nursing staff in hospitals and is a potential solution to assist with safe patient handling and mobility. In an attempt to off-load some of the physically-demanding tasks and automate mundane duties of overburdened nurses, we have developed the Adaptive Robotic Nursing Assistant (ARNA), which is a custom-built omnidirectional mobile platform with a 6-DoF robotic manipulator and a force sensitive walking handlebar. In this paper, we present a robot-specific neuroadaptive controller (NAC) for ARNA’s mobile base that employs online learning to estimate the robot’s unknown dynamic model and nonlinearities. This control scheme relies on an inner-loop torque controller and features convergence with Lyapunov stability guarantees. The NAC forces the robot to emulate a mechanical system with prescribed admittance characteristics during patient walking exercises and bed moving tasks. The proposed admittance controller is implemented on a model of the robot in a Gazebo-ROS simulation environment, and its effectiveness is investigated in terms of online learning of robot dynamics as well as sensitivity to payload variations. 
    more » « less
  2. null (Ed.)
    This paper presents a novel risk vector-based near miss prediction and obstacle avoidance method. The proposed method uses the sensor readings about the pose of the other obstacles to infer their motion model (velocity and heading) and, accordingly, adapt the risk assessment and take corrective actions if necessary. Relative vector calculations allow the method to perform in real-time. The algorithm has 1.68 times faster computation performance with less change of motion than other methods and it enables a robot to avoid 25 obstacles in a congested area. Fallback behaviors are also proposed in case of faulty sensors or situation changes. Simulation experiments with parameters inferred from experiments in the ocean with our custom-made robotic boat show the flexibility and adaptability of the proposed method to many obstacles present in the environment. Results highlight more efficient trajectories and comparable safety as other state-of-the-art methods, as well as robustness to failures. 
    more » « less
  3. Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm is designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions. 
    more » « less
  4. Abstract Robotic systems often struggle to adapt to dynamic, unstructured environments due to top-down design constraints based on human assumptions. Inspired by biological morphogenesis, this study introduces a cellular plasticity model based on Turing patterns, enabling multi-cellular robots to self-organize their cell phenotypes in response to environmental stimuli. The model leverages reaction-diffusion dynamics to capture key cellular plasticity phenomena observed in muscle cells, neurons, and stem cells. Analytical analysis explores equilibrium points, stability, and conditions for emergent Turing patterns, while simulations examine parametric influences on system behavior. Physical experiments with the Loopy platform demonstrate that its cells dynamically self-organize mechanical properties in response to behavioral and environmental demands. This response enables Loopy to achieve similar performance to empirically optimized static parameters in obstacle-free environments and outperform the static configuration in an environment with limited space. This work advances morphogenetic robotics, presenting a scalable framework for decentralized, dynamic adaptation in unmodeled environments. 
    more » « less
  5. In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in pick and place tasks, which are found across a range of application areas. The proposed system uses Large Language Model Meta AI (Llama3) to interpret voice commands by extracting essential details through parsing and decoding the commands into sequential actions. These actions are sent to DRL-VO, a learning-based control policy built on the Robot Operating System (ROS) that allows a robot to autonomously navigate through social spaces with static infrastructure and crowds of people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors. 
    more » « less