skip to main content


Title: Envisioning a sustainable agricultural water future across spatial scales
Abstract

Sustainable agricultural water systems are critical to ensure prosperous agricultural production, secure water resources, and support healthy ecosystems that sustain livelihoods and well-being. Many growing regions are using water unsustainably, leading to groundwater and streamflow depletion and polluted water bodies. Often, this is driven by global consumer demands, with environmental and social impacts occurring in regions far from where the crop is ultimately consumed. This letter defines sustainable agricultural water limits, both for quantity and quality, tying them to the impacts of agricultural water use, such as impacts on ecosystems, economies, human health, and other farmers. Imposing these limits will have a range of both positive and negative impacts on agricultural production, food prices, ecosystems, and health. Pathways forward exist and are proposed based on existing studies, showing the gains that can be made from the farm to global scale to ensure sustainable water systems while sustaining agricultural production.

 
more » « less
Award ID(s):
2020635
NSF-PAR ID:
10433875
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
8
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 085003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this Perspective we take an in-depth look at what coordinated stakeholder engagement could entail for phosphorus sustainability. The element phosphorus is critical to life on Earth and to the continued functioning of society as we know it. Yet, how society uses phosphorus is currently unsustainable, both as a resource in support of global food production where inequitable distribution creates food security challenges, but also from an environmental aspect, where mismanagement has led to negative impacts on the quality of agricultural soils, human health, and freshwater and marine ecosystems. A number of initiatives and cross-sector consortia have come together to address sustainable phosphorus management at either global or regional scales. However, these efforts could benefit from a more coordinated approach to stakeholder engagement to identify the diversity of needs and perspectives involved in this complex challenge. Herein we examine some examples of different approaches to developing such coordinated stakeholder engagement in other areas of environmental sustainability. We consider how to apply the lessons learned from those efforts toward stakeholder coordination in the realm of phosphorus sustainability. Particularly, we discuss the value of a coordinating body to manage the communications and knowledge sharing necessary to develop trust and cooperation among diverse stakeholder groups and to transition society to more sustainable phosphorus use.

     
    more » « less
  2. Abstract

    The Latin America and the Caribbean (LAC) region plays key roles in both meeting global agricultural demands and maintaining carbon sinks due to its abundant land and water resources. In this study we use the Global Change Analysis Model to evaluate the opportunities and challenges posed by two global‐scale drivers: agricultural market integration (i.e., reduction of trade barriers) and land‐based climate mitigation policy. We evaluate their potential individual and combined impacts on agricultural production and trade revenues across LAC's economies through mid‐century, as well as the resulting impacts on agricultural consumers and integrated land‐water‐climate systems across LAC's diverse sub‐regions. Increased global market integration results in increased agricultural production and trade revenues for many LAC economies, driven by their evolving comparative advantages. Climate mitigation measures on CO2and non‐CO2greenhouse gases increase revenues due to increased agricultural prices from land competition and emissions abatement. The combined outcomes from both drivers are complex and sometimes non‐linear, highlighting the importance of understanding the interactions between multiple drivers. Our results show that increased agricultural production and trade opportunities, from either of the two drivers, pose significant trade‐offs that require careful multi‐sectoral planning, such as emissions reduction challenges, potential loss of livestock production when pursuing land‐based climate mitigation strategies, increased consumer expenditures, and changes in land‐use or water withdrawals, resulting in deforestation or water scarcity pressures. There is considerable heterogeneity in economic and environmental outcomes across LAC sub‐regions and agricultural commodities, illustrating the value of considering outcomes at finer scales.

     
    more » « less
  3. Abstract

    Global food systems must be a part of strategies for greenhouse gas (GHG) mitigation, optimal water use, and nitrogen pollution reduction. Insights from research in these areas can inform policies to build sustainable food systems yet limited work has been done to build understanding around whether or not sustainability efforts compete with supply chain resilience. This study explores the interplay between food supply resilience and environmental impacts in US cities, within the context of global food systems’ contributions to GHG emissions, water use, and nitrogen pollution. Utilizing county-level agricultural data, we assess the water use, GHG emissions, and nitrogen losses of urban food systems across the US, and juxtapose these against food supply resilience, represented by supply chain diversity. Our results highlight that supply chain resilience and sustainability can simultaneously exist and are not necessarily in competition with each other. We also found a significant per capita footprint in the environmental domains across Southern cities, specifically those along the Gulf Coast and southern Great Plains. Food supply chain resilience scores ranged from 0.18 to 0.69, with lower scores in the southwest and Great Plains, while northeastern and Midwestern regions demonstrated higher resilience. We found several cities with high supply chain resilience and moderate or low environmental impacts as well as areas with high impacts and low resilience. This study provides insights into potential trade-offs and opportunities for creating sustainable urban food systems in the US, underscoring the need for strategies that consider both resilience and environmental implications.

     
    more » « less
  4. As blue water resources become increasingly scarce with more frequent droughts and overuse, irrigated agriculture faces significant challenges to reduce its water footprint while maintaining high levels of crop production. Building soil health has been touted as an important means of enhancing the resilience of agroecosystems to drought, mainly with a focus in rainfed systems reliant on green water through increases in infiltration and soil water storage. Yet, green water often contributes only a small fraction of the total crop water budget in irrigated agricultural regions. To scope the potential for how soil health management could impact water resources in irrigated systems, we review how soil health affects soil water flows, plant–soil–microbe interactions, and plant water capture and productive use. We assess how these effects could interact with irrigation management to help make green and blue water use more sustainable. We show how soil health management could (1) optimize green water availability (e.g., by increasing infiltration and soil water storage), (2) maximize productive water flows (e.g., by reducing evaporation and supporting crop growth), and (3) reduce blue water withdrawals (e.g., by minimizing the impacts of water stress on crop productivity). Quantifying the potential of soil health to improve water resource management will require research that focuses on outcomes for green and blue water provisioning and crop production under different irrigation and crop management strategies. Such information could be used to improve and parameterize finer scale crop, soil, and hydraulic models, which in turn must be linked with larger scale hydrologic models to address critical water-resources management questions at watershed or regional scales. While integrated soil health-water management strategies have considerable potential to conserve water—especially compared to irrigation technologies that enhance field-level water use efficiency but often increase regional water use—transitions to these strategies will depend on more than technical understanding and must include addressing interrelated structural and institutional barriers. By scoping a range of ways enhancing soil health could improve resilience to water limitations and identifying key research directions, we inform research and policy priorities aimed at adapting irrigated agriculture to an increasingly challenging future. 
    more » « less
  5. Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as well as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur, agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups. 
    more » « less