skip to main content


Title: Labor markets: A critical link between global-local shocks and their impact on agriculture
Abstract

Labor markets can shape the impacts of global market developments and local sustainability policies on agricultural outcomes, including changes in production and land use. Yet local labor market outcomes, including agricultural employment, migration and wages, are often overlooked in integrated assessment models (IAMs). The relevance of labor markets has become more important in recent decades, with evidence of diminished labor mobility in the United States (US) and other developed countries. We use the SIMPLE-G (Simplified International Model of agricultural Prices, Land use, and the Environment) modeling framework to investigate the impacts of a global commodity price shock and a local sustainable groundwater use policy in the US. SIMPLE-G is a multi-scale framework designed to allow for integration of economic and biophysical determinants of sustainability, using fine-scale geospatial data and parameters. We use this framework to compare the impacts of the two sets of shocks under two contrasting assumptions: perfect mobility of agricultural labor, as generally implicit in global IAMs, and relatively inelastic labor mobility (‘sticky’ agricultural labor supply response). We supplement the numerical simulations with analytical results from a stylized two-input model to provide further insights into the impacts of local and global shocks on agricultural labor, crop production and resource use. Findings illustrate the key role that labor mobility plays in shaping both local and global agricultural and environmental outcomes. In the perfect labor mobility scenario, the impact of a commodity price boom on crop production, employment and land-use is overestimated compared with the restricted labor mobility case. In the case of the groundwater sustainability policy, the perfect labor mobility scenario overestimates the reduction in crop production and employment in directly targeted grids as well as spillover effects that increase employment in other grids. For both shocks, impacts on agricultural wages are completely overlooked if we ignore rigidities in agricultural labor markets.

 
more » « less
Award ID(s):
2020635
NSF-PAR ID:
10483107
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
035007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The rapid depletion of US groundwater resources and rising number of dying wells in the Western US brings attention to the significance of groundwater governance and sustainability restrictions. However, such restrictions on groundwater withdrawals are likely to generate spillover effects causing further environmental stresses in other locations and adding to the complexity of sustainability challenges. The goal of this paper is to improve our understanding of the implications of growing global food demand for local sustainability stresses and the implications of local sustainability policies for local, regional, and global food production, land use, and prices. We employ SIMPLE-G-US (Simplified International Model of agricultural Prices, Land use, and the Environment—Gridded version for the United States) to distangle the significance or remote changes in population and income for irrigation and water resources in the US. Then we examine the local-to-global impacts of potential US groundwater sustainability policies. We find that developments in international markets are significant, as more than half of US sustainability stresses by 2050 are caused by increased commodity demand from abroad. Furthermore, a US sustainable groundwater policy can cause overseas spillovers of US production, thereby potentially contributing to environmental stresses elsewhere, even as groundwater stress in the US is alleviated. These unintended consequences could include deforestation due to cropland expansion, as well as degradation in water quality due to intensification of production in non-targeted areas.

     
    more » « less
  2. Abstract

    Estimating realistic potential yields by crop type and region is challenging; such yields depend on both biophysical characteristics (e.g., soil characteristics, climate, etc.), and the crop management practices available in any site or region (e.g., mechanization, irrigation, crop cultivars). A broad body of literature has assessed potential yields for selected crops and regions, using several strategies. In this study we first analyze future potential yields of major crop types globally by two different estimation methods, one of which is based on historical observed yields (“Empirical”), while the other is based on biophysical conditions (“Simulated”). Potential yields by major crop and region are quite different between the two methods; in particular, Simulated potential yields are typically 200% higher than Empirical potential yields in tropical regions for major crops. Applying both of these potential yields in yield gap closure scenarios in a global agro-economic model, GCAM, the two estimates of future potential yields lead to very different outcomes for the agricultural sector globally. In the Simulated potential yield closure scenario, Africa, Asia, and South America see comparatively favorable outcomes for agricultural sustainability over time: low land use change emissions, low crop prices, and high levels of self-sufficiency. In contrast, the Empirical potential yield scenario is characterized by a heavy reliance on production and exports in temperate regions that currently practice industrial agriculture. At the global level, this scenario has comparatively high crop commodity prices, and more land allocated to crop production (and associated land use change emissions) than either the baseline or Simulated potential yield scenarios. This study highlights the importance of the choice of methods of estimating potential yields for agro-economic modeling.

     
    more » « less
  3. This paper measures excess labor supply in equilibrium. We induce hiring shocks—which employ 24 percent of the labor force in external month-long jobs—in Indian local labor markets. In peak months, wages increase instantaneously and local aggregate employment declines. In lean months, consistent with severe labor rationing, wages and aggregate employment are unchanged, with positive employment spillovers on remaining workers, indicating that over a quarter of labor supply is rationed. At least 24 percent of lean self-employment among casual workers occurs because they cannot find jobs. Consequently, traditional survey approaches mismeasure labor market slack. Rationing has broad implications for labor market analysis. (JEL E24, J22, J23, J31, J64, O15, R23) 
    more » « less
  4. Abstract

    The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline.

     
    more » « less
  5. Understanding sustainable livestock production requires consideration of both qualitative and quantitative factors in a temporal and/or spatial frame. This study adapted Qualitative Comparative Analysis (QCA) to relate conditions of social, economic, and governance factors to changes in livestock inventory across several counties and over time. This paper presents an approach that (1) identified factors with the potential to relate to a change in livestock inventory and (2) analyzed commonalities within these factors related to changes spatially and temporally. This paper illustrates the approach and results when applied to five counties in eastern South Dakota. The specific response variables were periods of increasing, no change, or decreasing beef cattle, dairy cattle, and swine inventories in the specific counties for five-year census periods between 1992 and 2017. In the spatial analysis of counties, stable beef inventories and decreasing dairy inventories related to counties with increasing gross domestic products. The presence of specific social communities related to increases in county swine inventories. In the temporal analysis of census periods, local governance and economic factors, particularly market price influences, were more prevalent. Swine inventory showed a stronger link to cash crop markets than to livestock markets, whereas cattle market price increases associated with stable inventories for all animal types. Local governance tools had mixed effects for the different animal types across space and time. The factors and analysis results are context-specific. However, the process considers the various socio-economic processes in livestock production and community development applicable to agricultural sustainability questions in the Midwest and beyond. 
    more » « less