skip to main content


Title: Operation of NiO/β-(Al 0.21 Ga 0.79 ) 2 O 3 /Ga 2 O 3 Heterojunction Lateral Rectifiers at up to 225 °C

The characteristics of NiO/β-(Al0.21Ga0.79)2O3/Ga2O3 heterojunction lateral geometry rectifiers with the epitaxial layers grown by metal organic chemical vapor deposition were measured over a temperature range from 25 °C–225 °C. The forward current increased with temperature, while the on-state resistance decreased from 360 Ω.cm2at 25 °C to 30 Ω.cm2at 225 °C. The forward turn-on voltage was reduced from 4 V at 25 °C to 1.9 V at 225 °C. The reverse breakdown voltage at room temperature was ∼4.2 kV, with a temperature coefficient of −16.5 V K−1. This negative temperature coefficient precludes avalanche being the breakdown mechanism and indicates that defects still dominate the reverse conduction characteristics. The corresponding power figures-of-merit were 0.27–0.49 MW.cm−2. The maximum on/off ratios improved with temperature from 2105 at 25 °C to 3 × 107 at 225 °C when switching from 5 V forward to 0 V. The high temperature performance of the NiO/β-(Al0.21Ga0.79)2O3/Ga2O3 lateral rectifiers is promising if the current rate of optimization continues.

 
more » « less
NSF-PAR ID:
10433885
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
12
Issue:
7
ISSN:
2162-8769
Page Range / eLocation ID:
Article No. 075008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated.

     
    more » « less
  2. NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier. 
    more » « less
  3. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  4. The switching performance of unpackaged vertical geometry NiO/ β -Ga 2 O 3 rectifiers with a reverse breakdown voltage of 1.76 kV (0.1 cm diameter, 7.85 × 10 −3 cm 2 area) and an absolute forward current of 1.9 A fabricated on 20 μ m thick epitaxial β -Ga 2 O 3 drift layers and a double layer of NiO to optimize breakdown and contact resistance was measured with an inductive load test circuit. The Baliga figure-of-merit of the devices was 261 MW.cm −2 , with differential on-state resistance of 11.86 mΩ.cm 2 . The recovery characteristics for these rectifiers switching from forward current of 1 A to reverse off-state voltage of −550 V showed a measurement-parasitic-limited recovery time (t rr ) of 101 ns, with a peak current value of 1.4 A for switching from 640 V. The reverse recovery time was limited by extrinsic parasitic and thus does not represent the intrinsic device characteristics. There was no significant dependence of t rr on switching voltage or forward current. 
    more » « less
  5. NiO/β-Ga 2 O 3 vertical rectifiers exhibit near-temperature-independent breakdown voltages ( V B ) of >8 kV to 600 K. For 100 μm diameter devices, the power figure of merit ( V B ) 2 / R ON , where R ON is the on-state resistance, was 9.1 GW cm −2 at 300 K and 3.9 GW cm −2 at 600 K. By sharp contrast, Schottky rectifiers fabricated on the same wafers show V B of ∼1100 V at 300 K, with a negative temperature coefficient of breakdown of 2 V K −1 . The corresponding figures of merit for Schottky rectifiers were 0.22 GW cm −2 at 300 K and 0.59 MW cm −2 at 600 K. The on–off ratio remained >10 10 up to 600 K for heterojunction rectifiers but was 3 orders of magnitude lower over the entire temperature range for Schottky rectifiers. The power figure of merit is higher by a factor of approximately 6 than the 1-D unipolar limit of SiC. The reverse recovery times were ∼26 ± 2 ns for both types of devices and were independent of temperature. We also fabricated large area, 1 mm 2 rectifiers. These exhibited V B of 4 kV at 300 K and 3.6 kV at 600 K. The results show the promise of using this transparent oxide heterojunction for high temperature, high voltage applications. 
    more » « less