Confocal microscopy provides optical sectioning that is invaluable for many applications, most notably imaging into thick samples. However, the high cost of commercial confocal microscopes limits uses to specialized research and clinical settings. We present a minimalistic line-scanning confocal microscope costing less than $6,500 with optical performance comparable to a commercial laser scanning system. The optical sectioning and imaging performance are shown through measurement of the axial line-spread function and imaging of biological samples of varying thickness. Comparison is made to commercial widefield and confocal microscopes. The low cost of goods and optical sectioning capability of this microscope will allow the use of confocal microscopy in additional research and educational settings.
We demonstrate hyperspectral confocal microscopy in the short-wave infrared (SWIR) range of 1100–1600 nm using a wavelength-scanning laser in tandem with laser scanning confocal microscopy. Confocal microscopy in the SWIR range allows for high-resolution inspection of an integrated circuit (IC) chip, while hyperspectral imaging, together with a chemometric analysis, enables us to identify functional circuit block groups in the acquired image. With the extended capability, the developed instrument can be potentially used for inline inspection and non-invasive failure analysis of IC chips.
more » « less- Award ID(s):
- 1808331
- NSF-PAR ID:
- 10433907
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 48
- Issue:
- 15
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 3993
- Size(s):
- Article No. 3993
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Förster resonance energy transfer (FRET) is a valuable tool for measuring molecular distances and the effects of biological processes such as cyclic nucleotide messenger signaling and protein localization. Most FRET techniques require two fluorescent proteins with overlapping excitation/emission spectral pairing to maximize detection sensitivity and FRET efficiency. FRET microscopy often utilizes differing peak intensities of the selected fluorophores measured through different optical filter sets to estimate the FRET index or efficiency. Microscopy platforms used to make these measurements include wide-field, laser scanning confocal, and fluorescence lifetime imaging. Each platform has associated advantages and disadvantages, such as speed, sensitivity, specificity, out-of-focus fluorescence, and Zresolution. In this study, we report comparisons among multiple microscopy and spectral filtering platforms such as standard 2-filter FRET, emission-scanning hyperspectral imaging, and excitation-scanning hyperspectral imaging. Samples of human embryonic kidney (HEK293) cells were grown on laminin-coated 28 mm round gridded glass coverslips (10816, Ibidi, Fitchburg, Wisconsin) and transfected with adenovirus encoding a cAMP-sensing FRET probe composed of a FRET donor (Turquoise) and acceptor (Venus). Additionally, 3 FRET “controls” with fixed linker lengths between Turquoise and Venus proteins were used for inter-platform validation. Grid locations were logged, recorded with light micrographs, and used to ensure that whole-cell FRET was compared on a cell-by-cell basis among the different microscopy platforms. FRET efficiencies were also calculated and compared for each method. Preliminary results indicate that hyperspectral methods increase the signal-to-noise ratio compared to a standard 2-filter approach.more » « less
-
null (Ed.)In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.more » « less
-
The majority of microscopic and endoscopic technologies utilize white light illumination. For a number of applications, hyper-spectral imaging can be shown to have significant improvements over standard white-light imaging techniques. This is true for both microscopy and in vivo imaging. However, hyperspectral imaging methods have suffered from slow application times. Often, minutes are required to gather a full imaging stack. Here we will describe and evaluate a novel excitation-scanning hyperspectral imaging system and discuss some applications. We have developed and are optimizing a novel approach called excitation-scanning hyperspectral imaging that provides an order of magnitude increased signal strength. This excitation scanning technique has enabled us to produce a microscopy system capable of high speed hyperspectral imaging with the potential for live video acquisition. The excitation-scanning hyperspectral imaging technology we developed may impact a range of applications. The current design uses digital strobing to illuminate at 16 wavelengths with millisecond image acquisition time. Analog intensity control enables a fully customizable excitation profile. A significant advantage of excitation-scanning hyperspectral imaging is can identify multiple targets simultaneously in real time. Finally, we are exploring utilizing this technology for a variety of applications ranging from measuring cAMP distribution in three dimensions within a cell to electrophysiology.more » « less
-
Optical scattering poses a significant challenge to high-resolution microscopy within deep tissue. To accurately predict the performance of various microscopy techniques in thick samples, we present a computational model that efficiently solves Maxwell’s equation in highly scattering media. This toolkit simulates the deterioration of the laser beam point spread function (PSF) without making a paraxial approximation, enabling accurate modeling of high-numerical-aperture (NA) objective lenses commonly employed in experiments. Moreover, this framework is applicable to a broad range of scanning microscopy techniques including confocal microscopy, stimulated emission depletion (STED) microscopy, and ground-state depletion microscopy. Notably, the proposed method requires only readily obtainable macroscopic tissue parameters. As a practical demonstration, we investigate the performance of Laguerre–Gaussian (LG) versus Hermite–Gaussian (HG) depletion beams in STED microscopy.