skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on July 22, 2024

Title: Rational design of stable functional metal–organic frameworks
Functional porous metal–organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions ( e.g. , Al 3+ , Cr 3+ , Fe 3+ , Ti 4+ and Zr 4+ ) and carboxylate ligands; (2) MOFs based on low valent metal ions ( e.g. , Ni 2+ , Cu 2+ , and Zn 2+ ) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.  more » « less
Award ID(s):
2119433
NSF-PAR ID:
10434004
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Horizons
ISSN:
2051-6347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances ( d π–π and d S⋯S ). These MOFs also contained different amounts of aerobically oxidized TTFTC˙ + radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙ + population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙ + intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest d π–π (3.39 Å) and the largest initial TTFTC˙ + population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10 −5 S cm −1 ), whereas owing to its longest d π–π (3.68 Å) and a negligible TTFTC˙ + population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10 −7 S cm −1 ). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙ + population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10 −5 and 4.7 × 10 −5 S cm −1 , respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙ + population, and TTFTC/TTFTC˙ + IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs. 
    more » « less
  2. The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs. 
    more » « less
  3. Abstract

    Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal‐organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO‐67‐X (X: H, NH2, CH3) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature‐programmed desorption mass spectrometry (TPD‐MS) and in‐situ temperature‐programmed infrared (TP‐IR) spectroscopy. Ammonia was observed to interact with μ3−OH groups present on the secondary building unit of UiO‐67‐X MOFs via hydrogen bonding. TP‐IR studies revealed that under cryogenic UHV conditions, UiO‐67‐X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C−H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH−π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD‐MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol−1, suggesting physisorption of ammonia to UiO‐67‐X. In addition, missing linker defect sites, consisting of H2O coordinated to Zr4+sites, were detected through the formation ofnNH3⋅H2O clusters, characterized through in‐situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO‐67 MOFs. This highlights an advantage of using NH3for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO‐67‐X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.

     
    more » « less
  4. Metal-Organic Frameworks (MOFs) are the subject of intense research focus due to their potential applications in gas storage and separation, biomedicine, energy, and catalysis. Recently, low-valent MOFs (LVMOFs) have been explored for their potential use as heterogeneous catalysts, and multitopic phosphine linkers have been shown as a useful building block for the formation of LVMOFs. However, the synthesis of LVMOFs using phosphine linkers requires conditions that are distinct from the majority of the MOF synthetic literature, including the exclusion of air and water and the use of unconventional modulators and solvents, making it somewhat more challenging to access these materials. This work serves as a general tutorial for the synthesis of LVMOFs with phosphine linkers, including information on: 1) judicious choice of metal precursor, modulator, and solvent; 2) experimental procedures, air-free techniques, and required equipment; 3) proper storage and handling of the resultant LVMOFs; and 4) useful characterization methods for these materials. The intention of this report is to lower the barrier and make more accessible this new subfield of MOF research and facilitate advancements toward novel catalytic materials. 
    more » « less
  5. Abstract

    A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air‐ and moisture‐stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal–organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with PdIICl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with CoIIions and structural resolution by single crystal X‐ray diffraction. The Pd−Cl groups inside the pores are accessible to post‐synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd−CH3activated material undergoes rapid insertion of CO2gas to give Pd−OC(O)CH3at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2over CO, a Pd−N3modified version resists CO insertion under the same conditions.

     
    more » « less