skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decoupled Oligocene mylonitic shearing and Miocene detachment faulting in the East Humboldt Range metamorphic core complex, northeast Nevada, USA
The relationships between brittle detachment faulting and ductile shear zones in metamorphic core complexes are often ambiguous. Although it is commonly assumed that these two structures are kinematically linked and genetically related, direct observations of this coupling are rare. Here, we conducted a detailed field investigation to probe the connection between a detachment fault and mylonitic shear zone in the Ruby Mountain–East Humboldt Range metamorphic core complex, northeast Nevada. Field observations, along with new and published geochronology, demonstrate that Oligocene top-to-the-west mylonitic shear zones are crosscut by ca. 17 Ma subvertical basalt dikes, and these dikes are in turn truncated by middle Miocene detachment faults. The detachment faults appear to focus in preexisting weak zones in shaley strata and Mesozoic thrust faults. We interpret that the Oligocene mylonitic shear zones were generated in response to domal upwelling during voluminous plutonism and partial melting, which significantly predated the middle Miocene onset of regional extension and detachment slip. Our model simplifies mechanical issues with low-angle detachment faulting because there was an initial dip to the weak zones exploited by the future detachment-fault zone. This mechanism may be important for many apparent low-angle normal faults in the eastern Great Basin. We suggest that the temporal decoupling of mylonitic shearing and detachment faulting may be significant and underappreciated for many of the metamorphic core complexes in the North American Cordillera. In this case, earlier Eocene–Oligocene buoyant doming may have preconditioned the crust to be reactivated by Miocene extension thus explaining the spatial relationship between structures.  more » « less
Award ID(s):
1830139
PAR ID:
10434565
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geosphere
ISSN:
1553-040X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strongly deformed footwall rocks exposed in metamorphic core complexes (MCC) of the North American Cordillera were exhumed via ductile attenuation, mylonitic shearing, and detachment faulting. Whether these structures accommodated diapiric upwelling or regional extension via low‐angle normal faulting is debated. The Ruby Mountains‐East Humboldt Range MCC, northeast Nevada, records top‐west normal‐sense exhumation of deformed Proterozoic‐Paleozoic stratigraphy and older basement. We conducted 1:24,000‐scale mapping of the southwestern East Humboldt Range, with integrated structural, geochemical, and geochronological analyses to characterize the geometry and kinematics of extension and exhumation of the mylonitized footwall. Bedrock stratigraphy is pervasively intruded by Cretaceous, Eocene, and Oligocene intrusions, but observations of a coherent stratigraphic section show >80% vertical attenuation of Neoproterozoic to Ordovician rocks. These rocks are penetratively sheared with top‐west kinematics. The shear zone thus experienced combined pure‐ and simple‐shear (i.e., general shear) strain. We argue that this shear zone was syn‐/post‐kinematic with respect to Oligocene plutonism because: (a) mylonitic shearing spatially corresponds with preceding Oligocene intrusions; (b) thermochronology reveals that the shear zone experienced substantial cooling and exhumation after Oligocene plutonism; and (c) the mylonites are crosscut by undated, but likely late Oligocene, leucogranite. We propose that Eocene mantle‐derived magmatism and thermal incubation led to Oligocene diapiric upwelling of the middle crust, with ductile stretching focused on the flanks of this upwarp. Regional Basin and Range extension initiated later in the middle Miocene. Therefore, the development of the East Humboldt Range shear zone was not driven by regional extension and coupled detachment faulting. 
    more » « less
  2. Abstract The Sangre de Cristo Range in southern Colorado exposes some of the deepest Cenozoic structural levels in the Rocky Mountain region, including mylonitic shear zones associated with both the Laramide orogeny and Rio Grande rift. We investigated the relation between Laramide contraction and Rio Grande rift extension with detailed geologic mapping, kinematic analysis, and geochronometry in a 50 km2 area centered on the Independence Mine shear zone (IMSZ). The 15–100-m-thick IMSZ is one of several shallowly to moderately (~45° ± 20°) W-SW–dipping brittle-plastic shear zones along the western flank of the range. These shear zones display microstructural evidence of initiation as top-NE contractional mylonite zones, consistent with regional Laramide kinematics, which have been pervasively overprinted by shear fabrics indicating top-SW extensional reactivation. Both top-NE and top-SW shear fabrics involve cataclasis and quartz dislocation creep, although top-SW shear is more commonly localized along phyllosilicate-lined shear bands. Shear zones are hosted predominately within Proterozoic gneiss, and contain abundant chlorite and white mica derived from alteration of hornblende and feldspar, which indicates that weakening driven by fluid reactions played an important role in localizing strain. Extensional overprinting appears to be most pervasive along more steeply dipping portions of shear zones and where secondary phyllosilicates form an interconnected weak phase, which suggests that reactivation was primarily controlled by geometry and rheological contrasts inherited from contraction. One top-SW shear zone adjacent to the IMSZ cuts a late Oligocene gabbro stock, and monazite grains synkinematic with top-SW shear in the IMSZ yielded late Oligocene to Early Miocene U-Th-Pb dates that correspond with initiation of the Rio Grande rift. Reactivation of weak reverse faults may represent an important structural control during initial extension in the middle crust, prior to slip along the high-angle Sangre de Cristo normal fault system. 
    more » « less
  3. Abstract Many low-angle normal faults (dip ≤30°) accommodate tens of kilometers of crustal extension, but their mechanics remain contentious. Most models for low-angle normal fault slip assume vertical maximum principal stress σ1, leading many authors to conclude that low-angle normal faults are poorly oriented in the stress field (≥60° from σ1) and weak (low friction). In contrast, models for low-angle normal fault formation in isotropic rocks typically assume Coulomb failure and require inclined σ1 (no misorientation). Here, a data-based, mechanical-tectonic model is presented for formation of the Whipple detachment fault, southeastern California. The model honors local and regional geologic and tectonic history and laboratory friction measurements. The Whipple detachment fault formed progressively in the brittle-plastic transition by linking of “minidetachments,” which are small-scale analogs (meters to kilometers in length) in the upper footwall. Minidetachments followed mylonitic anisotropy along planes of maximum shear stress (45° from the maximum principal stress), not Coulomb fractures. They evolved from mylonitic flow to cataclasis and frictional slip at 300–400 °C and ∼9.5 km depth, while fluid pressure fell from lithostatic to hydrostatic levels. Minidetachment friction was presumably high (0.6–0.85), based upon formation of quartzofeldspathic cataclasite and pseudotachylyte. Similar mechanics are inferred for both the minidetachments and the Whipple detachment fault, driven by high differential stress (∼150–160 MPa). A Mohr construction is presented with the fault dip as the main free parameter. Using “Byerlee friction” (0.6–0.85) on the minidetachments and the Whipple detachment fault, and internal friction (1.0–1.7) on newly formed Reidel shears, the initial fault dips are calculated at 16°–26°, with σ1 plunging ∼61°–71° northeast. Linked minidetachments probably were not well aligned, and slip on the evolving Whipple detachment fault probably contributed to fault smoothing, by off-fault fracturing and cataclasis, and to formation of the fault core and fractured damage zone. Stress rotation may have occurred only within the mylonitic shear zone, but asymmetric tectonic forces applied to the brittle crust probably caused gradual rotation of σ1 above it as a result of: (1) the upward force applied to the base of marginal North America by buoyant asthenosphere upwelling into an opening slab-free window and/or (2) basal, top-to-the-NE shear traction due to midcrustal mylonitic flow during tectonic exhumation of the Orocopia Schist. The mechanical-tectonic model probably applies directly to low-angle normal faults of the lower Colorado River extensional corridor, and aspects of the model (e.g., significance of anisotropy, stress rotation) likely apply to formation of other strong low-angle normal faults. 
    more » « less
  4. Within extreme continental extension areas, ductile middle crust is exhumed at the surface as metamorphic core complexes. Sophisticated quantitative models of extreme extension predicted upward transport of ductile middlelower crust through time. Here we develop a general model for metamorphic core complexes formation and demonstrate that they result from the collapse of a mountain belt supported by a thickened crustal root. We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes. Isostatic rebound exposes the detachment in a domed upwarp, while the final Moho discontinuity across the extended region relaxes to a flat geometry. This work suggests that belts of metamorphic core complexes are a fossil signature of collapsed highlands. 
    more » « less
  5. Abstract The effects of Arabia-Eurasia collision are recorded in faults, basins, and exhumed metamorphic massifs across eastern and central Anatolia. These faults and basins also preserve evidence of major changes in deformation and associated sedimentary processes along major suture zones including the Inner Tauride suture where it lies along the southern (Ecemiş) segment of the Central Anatolian fault zone. Stratigraphic and structural data from the Ecemiş fault zone, adjacent NE Ulukışla basin, and metamorphic dome (Niğde Massif) record two fundamentally different stages in the Cenozoic tectonic evolution of this part of central Anatolia. The Paleogene sedimentary and volcanic strata of the NE Ulukışla basin (Ecemiş corridor) were deposited in marginal marine to marine environments on the exhuming Niğde Massif and east of it. A late Eocene–Oligocene transpressional stage of deformation involved oblique northward thrusting of older Paleogene strata onto the eastern Niğde Massif and of the eastern massif onto the rest of the massif, reburying the entire massif to >10 km depth and accompanied by left-lateral motion on the Ecemiş fault zone. A profound change in the tectonic setting at the end of the Oligocene produced widespread transtensional deformation across the area west of the Ecemiş fault zone in the Miocene. In this stage, the Ecemiş fault zone had at least 25 km of left-lateral offset. Before and during this faulting episode, the central Tauride Mountains to the east became a source of sediments that were deposited in small Miocene transtensional basins formed on the Eocene–Oligocene thrust belt between the Ecemiş fault zone and the Niğde Massif. Normal faults compatible with SW-directed extension cut across the Niğde Massif and are associated with a second (Miocene) re-exhumation of the Massif. Geochronology and thermochronology indicate that the transtensional stage started at ca. 23–22 Ma, coeval with large and diverse geological and tectonic changes across Anatolia. 
    more » « less