The NLTS (No Low-Energy Trivial State) conjecture of Freedman and Hastings posits that there exist families of Hamiltonians with all low energy states of non-trivial complexity (with complexity measured by the quantum circuit depth preparing the state). We prove this conjecture by showing that a particular family of constant-rate and linear-distance qLDPC codes correspond to NLTS local Hamiltonians, although we believe this to be true for all current constructions of good qLDPC codes. 
                        more » 
                        « less   
                    
                            
                            A construction of combinatorial NLTS
                        
                    
    
            The NLTS (No Low-Energy Trivial State) conjecture [M. H. Freedman and M. B. Hastings, Quantum Inf. Comput. 14, 144 (2014)] posits that there exist families of Hamiltonians with all low energy states of high complexity (with complexity measured by the quantum circuit depth preparing the state). Here, we prove a weaker version called the combinatorial no low error trivial states (NLETS), where a quantum circuit lower bound is shown against states that violate a (small) constant fraction of local terms. This generalizes the prior NLETS results [L. Eldar and A. W. Harrow, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2017), pp. 427–438] and [Nirkhe et al., in 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Leibniz International Proceedings in Informatics (LIPIcs), edited by Chatzigiannakis et al. (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018), Vol. 107, pp. 1–11]. Our construction is obtained by combining tensor networks with expander codes [M. Sipser and D. Spielman, IEEE Trans. Inf. Theory 42, 1710 (1996)]. The Hamiltonian is the parent Hamiltonian of a perturbed tensor network, inspired by the “uncle Hamiltonian” of Fernández-González et al. [Commun. Math. Phys. 333, 299 (2015)]. Thus, we deviate from the quantum Calderbank-Shor-Steane (CSS) code Hamiltonians considered in most prior works. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2013303
- PAR ID:
- 10434665
- Date Published:
- Journal Name:
- Journal of Mathematical Physics
- Volume:
- 63
- Issue:
- 12
- ISSN:
- 0022-2488
- Page Range / eLocation ID:
- 122201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).more » « less
- 
            We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.more » « less
- 
            Fuzzy extractors convert noisy signals from the physical world into reliable cryptographic keys. Fuzzy min-entropy measures the limit of the length of key that a fuzzy extractor can derive from a distribution (Fuller et al. in IEEE Trans Inf Theory 66(8):5282–5298, 2020). In general, fuzzy min-entropy that is superlogarithmic in the security parameter is required for a noisy distribution to be suitable for key derivation. There is a wide gap between what is possible with respect to computational and information-theoretic adversaries. Under the assumption of general-purpose obfuscation, keys can be securely derived from all distributions with superlogarithmic entropy. Against information-theoretic adversaries, however, it is impossible to build a single fuzzy extractor that works for all distributions (Fuller et al. 2020). A weaker information-theoretic goal is building a fuzzy extractor for each probability distribution. This is the approach taken by Woodage et al. (in: Advances in Cryptology—CRYPTO, Springer, pp 682–710, 2017). Prior approaches use the full description of the probability mass function and are inefficient. We show this is inherent: for a quarter of distributions with fuzzy min-entropy and $2^k$ points there is no secure fuzzy extractor that uses less $$2^{\Theta(k)}$$ bits of information about the distribution. We show an analogous result with stronger parameters for information-theoretic secure sketches. Secure sketches are frequently used to construct fuzzy extractors.more » « less
- 
            In this paper, we present a linear-time decoding algorithm for expander codes based on irregular graphs of any positive vertex expansion factor [Formula: see text] and inner codes with a minimum distance of at least [Formula: see text], where [Formula: see text] is the maximum right degree. The algorithm corrects a constant fraction of errors. It builds on two thrusts. The first is a series of works starting with that of Sipser and Spielman [Expander codes, IEEE Trans. Inf. Theory 42(6) (1996) 1710–1722] demonstrating that an asymptotically good family of error-correcting codes that can be decoded in linear time even from a constant fraction of errors in a received word provided [Formula: see text] is at least [Formula: see text] and continuing to the results of Gao and Dowling [Fast decoding of expander codes, IEEE Trans. Inf. Theory 64(2) (2018) 972–978], which only require [Formula: see text] provided the inner code minimum distance is sufficiently large. The second is the improved performance of LDPC codes based on irregular graphs demonstrated by Luby et al. [Improved low- density parity-check codes using irregular graphs, IEEE Trans. Inf. Theory 47(2) (2001) 585–598] and Richardson et al. [Design of capacity- approaching irregular low-density parity-check codes, IEEE Trans. Inf. Theory 47(2) (2001) 619–637]. The algorithm presented in this paper allows for irregular or regular graph-based constructions and uses inner codes of appropriate lengths as checks rather than simple parity-checks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    