skip to main content


Title: Learning the Structure of Large Networked Systems Obeying Conservation Laws
Many networked systems such as electric networks, the brain, and social networks of opinion dynamics are known to obey conservation laws. Examples of this phenomenon include the Kirchoff laws in electric networks and opinion consensus in social networks. Conservation laws in networked systems are modeled as balance equations of the form X=B*Y, where the sparsity pattern of B*∈R^{p×p} captures the connectivity of the network on p nodes, and Y, X ∈ R^p are vectors of ''potentials'' and ''injected flows'' at the nodes respectively. The node potentials Y cause flows across edges which aim to balance out the potential difference, and the flows X injected at the nodes are extraneous to the network dynamics. In several practical systems, the network structure is often unknown and needs to be estimated from data to facilitate modeling, management, and control. To this end, one has access to samples of the node potentials Y, but only the statistics of the node injections X. Motivated by this important problem, we study the estimation of the sparsity structure of the matrix B* from n samples of Y under the assumption that the node injections X follow a Gaussian distribution with a known covariance Σ_X. We propose a new ℓ1-regularized maximum likelihood estimator for tackling this problem in the high-dimensional regime where the size of the network may be vastly larger than the number of samples n. We show that this optimization problem is convex in the objective and admits a unique solution. Under a new mutual incoherence condition, we establish sufficient conditions on the triple (n,p,d) for which exact sparsity recovery of B* is possible with high probability; d is the degree of the underlying graph. We also establish guarantees for the recovery of B* in the element-wise maximum, Frobenius, and operator norms. Finally, we complement these theoretical results with experimental validation of the performance of the proposed estimator on synthetic and real-world data.  more » « less
Award ID(s):
2048223 1934766
NSF-PAR ID:
10435129
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Networked systems that occur in various domains, such as electric networks, the brain, and opinion networks, are known to obey conservation laws. For instance, electric networks obey Kirchoff’s laws, and social networks obey opinion consensus. Conservation laws are often modeled as balance equations that relate appropriate injected flows and potentials at the nodes of the networks. A recent line of work considers the problem of estimating the unknown structure of such networked systems from observations of node potentials (and only the knowledge of the statistics of injected flows). Given the dynamic nature of the systems under consideration, an equally important task is estimating the change in the structure of the network from data – the so called differential network analysis problem. That is, given two sets of node potential observations, the goal is to estimate the structural differences between the underlying networks. We formulate this novel differential network analysis problem for systems obeying conservation laws and devise a convex estimator to learn the edge changes directly from node potentials. We derive conditions under which the estimate is unique in the high-dimensional regime and devise an efficient ADMM-based approach to perform the estimation. Finally, we demonstrate the performance of our approach on synthetic and benchmark power network data. 
    more » « less
  2. In this article, we investigate the problem of simultaneous change point inference and structure recovery in the context of high dimensional Gaussian graphical models with possible abrupt changes. In particular, motivated by neighborhood selection, we incorporate a threshold variable and an unknown threshold parameter into a joint sparse regression model which combines p l1-regularized node-wise regression problems together. The change point estimator and the corresponding estimated coefficients of precision matrices are obtained together. Based on that, a classifier is introduced to distinguish whether a change point exists. To recover the graphical structure correctly, a data-driven thresholding procedure is proposed. In theory, under some sparsity conditions and regularity assumptions, our method can correctly choose a homogeneous or heterogeneous model with high accuracy. Furthermore, in the latter case with a change point, we establish estimation consistency of the change point estimator, by allowing the number of nodes being much larger than the sample size. Moreover, it is shown that, in terms of structure recovery of Gaussian graphical models, the proposed thresholding procedure achieves model selection consistency and controls the number of false positives. The validity of our proposed method is justified via extensive numerical studies. Finally, we apply our proposed method to the S&P 500 dataset to show its empirical usefulness. 
    more » « less
  3. null (Ed.)
    Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predict links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 15% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 5 out of the 6 networks in the transductive setting. 
    more » « less
  4. We consider the high-dimensional linear regression problem, where the algorithmic goal is to efficiently infer an unknown feature vector $\beta^*\in\mathbb{R}^p$ from its linear measurements, using a small number $n$ of samples. Unlike most of the literature, we make no sparsity assumption on $\beta^*$, but instead adopt a different regularization: In the noiseless setting, we assume $\beta^*$ consists of entries, which are either rational numbers with a common denominator $Q\in\mathbb{Z}^+$ (referred to as $Q-$rationality); or irrational numbers taking values in a rationally independent set of bounded cardinality, known to learner; collectively called as the mixed-range assumption. Using a novel combination of the Partial Sum of Least Squares (PSLQ) integer relation detection, and the Lenstra-Lenstra-Lov\'asz (LLL) lattice basis reduction algorithms, we propose a polynomial-time algorithm which provably recovers a $\beta^*\in\mathbb{R}^p$ enjoying the mixed-range assumption, from its linear measurements $Y=X\beta^*\in\mathbb{R}^n$ for a large class of distributions for the random entries of $X$, even with one measurement ($n=1$). In the noisy setting, we propose a polynomial-time, lattice-based algorithm, which recovers a $\beta^*\in\mathbb{R}^p$ enjoying the $Q-$rationality property, from its noisy measurements $Y=X\beta^*+W\in\mathbb{R}^n$, even from a single sample ($n=1$). We further establish that for large $Q$, and normal noise, this algorithm tolerates information-theoretically optimal level of noise. We then apply these ideas to develop a polynomial-time, single-sample algorithm for the phase retrieval problem. Our methods address the single-sample ($n=1$) regime, where the sparsity-based methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) and the Basis Pursuit are known to fail. Furthermore, our results also reveal algorithmic connections between the high-dimensional linear regression problem, and the integer relation detection, randomized subset-sum, and shortest vector problems. 
    more » « less
  5. We aim to preserve a large amount of data generated insidebase station-less sensor networks(BSNs) while considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the data preservation process. We refer to the problem as DPP:datapreservationproblem in the BSN. Previous research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources and maximize their benefit.

    In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation. For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.

     
    more » « less