skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applying data science advances in disease surveillance and control
Applying data science advances in disease surveillance and control Dr. David S. Ebert and Dr. Aaron Wendelboe explain how a cohesive, multidisciplinary, and multi-tiered approach can support a more predictive model in disease surveillance and control. Public health disease surveillance is being conducted in countless settings, including healthcare, vertebrate and invertebrate animals, wastewater, air quality, transportation, and commercial activities, but, attaining the goal of early disease detection has been somewhat elusive. For instance, one of the few key shortcoming of public health preparedness efforts is the insufficient collaboration between multidisciplinary experts, such as data scientists, computer engineers, anthropologists, social scientists, and systems engineers. To address these gaps in knowledge and preparedness, we are responding in a multi-tiered approach with a One Health perspective that will be economically feasible and sustainable. The authors have also engaged a broad set of stakeholders, created broad multidisciplinary teams, are combining relevant data sources in innovative ways that will serve as early indicators, are using advanced technologies for early diagnosis, and advancing analytic methods to maintain high specificity for true event identification.  more » « less
Award ID(s):
2200299
PAR ID:
10435533
Author(s) / Creator(s):
Date Published:
Journal Name:
Open Access Government
Volume:
39
Issue:
1
ISSN:
2516-3817
Page Range / eLocation ID:
152 to 153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The sampling and analysis of sewage for pathogens and other biomarkers offers a powerful tool for monitoring and understanding community health trends and potentially predicting disease outbreaks. Since the early months of the COVID-19 pandemic, the use of wastewater-based testing for public health surveillance has increased markedly. However, these efforts have focused on urban and peri-urban areas. In most rural regions of the world, healthcare service access is more limited than in urban areas, and rural public health agencies typically have less disease outcome surveillance data than their urban counterparts. The potential public health benefits of wastewater-based surveillance for rural communities are therefore substantial - though so too are the methodological and ethical challenges. For many rural communities, population dynamics and insufficient, aging, and inadequately maintained wastewater collection and treatment infrastructure present obstacles to the reliable and responsible implementation of wastewater-based surveillance. Practitioner observations and research findings indicate that for many rural systems, typical implementation approaches for wastewater-based surveillance will not yield sufficiently reliable or actionable results. We discuss key challenges and potential strategies to address them. However, to support and expand the implementation of responsible, reliable, and ethical wastewater-based surveillance for rural communities, best practice guidelines and standards are needed. 
    more » « less
  2. A comprehensive approach to integrated one health surveillance and responseSurveillance data plays a crucial role in understanding and responding to emerging infectious diseases; here, we learn why adopting a One Health surveillance approach to EIDs can help to protect human, animal, and environmental health. Over 75% of emerging infectious diseases (EIDs) affecting humans are zoonotic diseases with animal hosts, which can be transmitted by waterborne, foodborne, vector-borne, or air-borne pathways. (7) Early detection is important and allows for a rapid response through preventive and control measures. However, early detection of EIDs is hindered by several obstacles, such as climate change, which can alter habitats, leading to shifts in the distribution of disease- carrying vectors like mosquitoes and ticks. This can result in diseases such as malaria, dengue fever, and Lyme disease becoming more common in areas with established transmission or spreading to new areas entirely. (4) Environmental changes such as deforestation and urbanization disrupt ecosystems, increasing the likelihood of zoonotic disease spillover from wildlife to humans. In addition to working at the interface of these changes, detection and tracking of EIDs also requires sharing and standardization of complex data and integrating processes across different regions and health systems. 
    more » « less
  3. Abstract Traditional health surveillance methods play a critical role in public health safety but are limited by the data collection speed, coverage, and resource requirements. Wastewater‐based epidemiology (WBE) has emerged as a cost‐effective and rapid tool for detecting infectious diseases through sewage analysis of disease biomarkers. Recent advances in big data analytics have enhanced public health monitoring by enabling predictive modeling and early risk detection. This paper explores the application of machine learning (ML) in WBE data analytics, with a focus on infectious disease surveillance and forecasting. We highlight the advantages of ML‐driven WBE prediction models, including their ability to process multimodal data, predict disease trends, and evaluate policy impacts through scenario simulations. We also examine challenges such as data quality, model interpretability, and integration with existing public health infrastructure. The integration of ML WBE data analytics enables rapid health data collection, analysis, and interpretation that are not feasible in current surveillance approaches. By leveraging ML and WBE, decision makers can reduce cognitive biases and enhance data‐driven responses to public health threats. As global health risks evolve, the synergy between WBE, ML, and data‐driven decision‐making holds significant potential for improving public health outcomes. 
    more » « less
  4. Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions. 
    more » « less
  5. The rapidly expanding use of wastewater for public health surveillance requires new strategies to protect privacy rights, while data are collected at increasingly discrete geospatial scales, i.e., city, neighborhood, campus, and building-level. Data collected at high geospatial resolution can inform on labile, short-lived biomarkers, thereby making wastewater-derived data both more actionable and more likely to cause privacy concerns and stigma- tization of subpopulations. Additionally, data sharing restrictions among neighboring cities and communities can complicate efforts to balance public health protections with citizens’ privacy. Here, we have created an encrypted framework that facilitates the sharing of sensitive population health data among entities that lack trust for one another (e.g., between adjacent municipalities with different governance of health monitoring and data sharing). We demonstrate the utility of this approach with two real-world cases. Our results show the feasibility of sharing encrypted data between two municipalities and a laboratory, while performing secure private com- putations for wastewater-based epidemiology (WBE) with high precision, fast speeds, and low data costs. This framework is amenable to other computations used by WBE researchers including population normalized mass loads, fecal indicator normalizations, and quality control measures. The Centers for Disease Control and Pre- vention’s National Wastewater Surveillance System shows ~8 % of the records attributed to collection before the wastewater treatment plant, illustrating an opportunity to further expand currently limited community-level sampling and public health surveillance through security and responsible data-sharing as outlined here. 
    more » « less