skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Backtracking CTE Pathways: Identifying and Investigating Pathways and Critical Junctures in Two-Year Information Technology Programs
This NSF Advanced Technological Education (ATE) research and development project aims to design and test a Backtracking Technique for understanding the pathways students take through college and into careers in science, technology, engineering, and mathematics (STEM) and career and technical education (CTE), with the focus of this project on information technology (IT). The project gathers data about current and former students who started in the same cohort, includes institutional research data (e.g., grades, demographics, course-taking) and merges these data with employment data from surveys and lived experiences obtained from interviews. These data are analyzed to identify potential pathways and critical junctions that may lead to student success or other outcomes. The research team is led by a doctoral granting institution and a community college, and includes four additional community colleges that collectively serve rural and urban student populations. In this paper we share the potential of the Backtracking Technique to generate contextualized career pathway data for institutions and create visualizations that can aid in institutional decision-making through a study pilot. The pilot is an initial effort to test the project’s aims of integrating institutional data with phenomenological data to model student progression through post-secondary STEM programs. The analysis will identify and verify influencers that support or hinder student success. Quantitative data analyses will consist of descriptive and comparative methods, which will be verified and informed by open coding and thematic analysis of the qualitative data. We share how the systematic investigation of institutional and phenomenological data used in the Backtracking Technique has the potential to: (1) generate practical knowledge about academic/career pathways in information technology for use by stakeholders; (2) identify and examine relationships among these pathways, students experiences, and psychosocial factors; and (3) add to the analytical methods available to institutional research professionals to document, investigate, and visualize student pathway information using data dashboards. This ATE project has great potential to transform the technician preparation for the advanced technology fields that drive the nation's economy.  more » « less
Award ID(s):
2000799
PAR ID:
10435766
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  2. Focus/Problem Statement Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? Theoretical or Conceptual Framework We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. Methodology/Design of the Study or Organization The pilot for the Spring 2023 semester will have Intro to Mechanical Engineering (MECE 1101) students work in teams in a semester-long product innovation project to redesign a simple kitchen appliance. Students will learn theory and methodology of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students will concurrently take UNIV 1301 (Learning Frameworks) where they will have a semester-long project to define their career pathways. Both projects, product innovation and career pathways, will follow the Challenge Based Instruction (CBI) approach. Periodically, a connection will be established between the projects to show the students how to use the lessons from product innovation by analogy and reflection in their career pathways project. The authors believe that the MECE 1101 project initiates a process for students to become innovators and entrepreneurs, while the UNIV 1301 project prepares students as self-innovators for future academic, personal, and professional challenges. Findings/Conclusions In this session, the authors will share their experiences and plan of implementation as well as details from recent NSF IUSE HSI funding for this purpose. The authors expect audience engagement to receive suggestions and ideas to improve freshman student success. 
    more » « less
  3. To build the nation's skilled technical workforce, the demand for entry and middle-skill professionals in technical fields in Science, Technology, Engineering, and Mathematics (STEM) is increasing. The alignment between educational programming and job requirements for STEM-oriented technicians is essential for establishing career pathways that produce high-quality middle skills professionals for technology-rich fields. Building on prior research on rural Florida’s information technologies career pathways, in this National Science Foundation (NSF) Advanced Technician Education (ATE) targeted research project, FSU researchers are investigating alignment among educational opportunities, employer needs, student readiness and new employee experiences in Advanced Manufacturing (AM) and test the usefulness of tools and processes developed to assess such alignment, focusing on the opportunities and challenges in Florida’s rural areas. Researchers constructed and are iteratively refining an AM Body of Knowledge (BOK) for analysis and community engagement. The quantitative and qualitative mixed methods research design combines content analysis and text mining using the BOK with surveys, and interviews/focus groups. The research team is applying text mining approaches to identify the match between syllabi learning outcomes, industry certification requirements, state curriculum frameworks, and job postings. In interviews and focus groups, researchers are qualitatively assessing the employers’ competency expectations and new professionals’ job experiences. These analyses will build capacity among rural stakeholders to strengthen and expand their technical workforce. 
    more » « less
  4. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this framework four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs. 
    more » « less
  5. The experiences of underrepresented women and ethnic minorities in computer science (CS) fields are at the heart of understanding the factors that impact the critical transitions students face when entering into Science, Technology, Engineering, or Mathematics (STEM) careers. The research, conducted using a grounded theory approach, gauges student and teacher perspectives, specifically investigating minoritized student perspectives that influence their entrance and continuation into an educational pathway. The study’s outcomes underscore the crucial roles of (1) Student Family Encouragement, (2) School and Community Engagement, and (3) Professional/Teacher Mentorship as critical junctions that school districts should be aware of when creating student pathways into college and career, particularly for underrepresented groups. 
    more » « less