skip to main content


Title: ForETaxi: Data-Driven Fleet-Oriented Charging Resource Allocation in Large-Scale Electric Taxi Networks
Charging processes are the key to promoting electric taxis and improving their operational efficiency due to frequent charging activities and long charging time. Nevertheless, optimizing charging resource allocation in real time is extremely challenging because of uneven charging demand/supply distributions, heuristic-based charging behaviors of drivers, and city-scale of the fleets. The existing solutions have utilized real-time contextual information for charging recommendation, but they do not consider the much-richer fleet information, leading to the suboptimal individual-based charging recommendation. In this paper, we design a data-driven fleet-oriented charging recommendation system for charging resource allocation called ForETaxi for electric taxis , which aims to minimize the overall charging overhead for the entire fleet, instead of individual vehicles. ForETaxi considers not only current charging requests but also possible charging requests of other nearby electric taxis in the near future by inferring their status in real time. More importantly, we implement ForETaxi with multiple types of sensor data from the Chinese Shenzhen city including GPS data, and taxi transaction data from more than 13,000 electric taxis, combined with road network data and charging station data. The data-driven evaluation results show that compared to the state-of-the-art individual-based recommendation methods, our fleet-oriented ForETaxi outperforms them by 16% in the total charging time reduction and 82% in the queuing time reduction.  more » « less
Award ID(s):
1849238 1932223 1952096 2003874
PAR ID:
10436027
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Sensor Networks
Volume:
19
Issue:
3
ISSN:
1550-4859
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric Vehicle (EV) charging recommendation that both accommodates user preference and adapts to the ever-changing external environment arises as a cost-effective strategy to alleviate the range anxiety of private EV drivers. Previous studies focus on centralized strategies to achieve optimized resource allocation, particularly useful for privacy-indifferent taxi fleets and fixed-route public transits. However, private EV driver seeks a more personalized and resource-aware charging recommendation that is tailor-made to accommodate the user preference (when and where to charge) yet sufficiently adaptive to the spatiotemporal mismatch between charging supply and demand. Here we propose a novel Regularized Actor-Critic (RAC) charging recommendation approach that would allow each EV driver to strike an optimal balance between the user preference (historical charging pattern) and the external reward (driving distance and wait time). Experimental results on two real-world datasets demonstrate the unique features and superior performance of our approach to the competing methods. 
    more » « less
  2. Amini, MR ; Canu, S. ; Fischer, A. ; Guns, T. ; Kralj Novak, P. ; Tsoumakas, G. (Ed.)
    Electric Vehicle (EV) charging recommendation that both accommodates user preference and adapts to the ever-changing external environment arises as a cost-effective strategy to alleviate the range anxiety of private EV drivers. Previous studies focus on centralized strategies to achieve optimized resource allocation, particularly useful for privacy-indifferent taxi fleets and fixed-route public transits. However, private EV driver seeks a more personalized and resource-aware charging recommendation that is tailor-made to accommodate the user preference (when and where to charge) yet sufficiently adaptive to the spatiotemporal mismatch between charging supply and demand. Here we propose a novel Regularized Actor-Critic (RAC) charging recommendation approach that would allow each EV driver to strike an optimal balance between the user preference (historical charging pattern) and the external reward (driving distance and wait time). Experimental results on two real-world datasets demonstrate the unique features and superior performance of our approach to the competing methods. 
    more » « less
  3. Electrifying the ride-hailing services has the potential to significantly reduce greenhouse gas emissions in the shared mobility sector. However, these emission reduction benefits depend on the utilization of EVs to serve trip requests, especially during the fleet electrification process. In this paper, we evaluated the performance and emission impacts of ride-hailing service with three dispatching policies and various EV penetration levels in the ride-hailing fleet. A large-scale simulation platform was developed for the city of San Francisco in SUMO to enable the application of ride-hailing, electric vehicle charging, and idle vehicle repositioning. Simulation results indicate that with a 60% EVs in the simulated fleet, the off-peak EV priority policy and off-peak EV only policy can reduce CO2 emissions by 32% - 40% while preserving the mobility performance in terms of deadheading, total travel distance, and average rider pick-up time. It is important for ride-hailing platforms to increase the zero-emission rides and encourage ride pooling to comply with California’s Clean Miles Standard. 
    more » « less
  4. null (Ed.)
    A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Spatial-temporal allocation of resources is optimized to allocate electric scooters across urban areas, place charging stations for vehicles, and design efficient on-demand transit. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized methodologies have been used to tackle such problems, none of the approaches scale well for large-scale decision problems. We create a general approach to hierarchical planning that leverages structure in city-level CPS problems to tackle resource allocation under uncertainty. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from a major metropolitan area in the United States to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response. 
    more » « less
  5. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less