skip to main content


Title: Tutorial: Metalorganic chemical vapor deposition of β -Ga2O3 thin films, alloys, and heterostructures
β-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor with a bandgap energy of ∼ 4.8 eV and a predicted high critical electric field strength of ∼8 MV/cm, enabling promising applications in next generation high power electronics and deep ultraviolet optoelectronics. The advantages of Ga2O3 also stem from its availability of single crystal bulk native substrates synthesized from melt, and its well-controllable n-type doping from both bulk growth and thin film epitaxy. Among several thin film growth methods, metalorganic chemical vapor deposition (MOCVD) has been demonstrated as an enabling technology for developing high-quality epitaxy of Ga2O3 thin films, (AlxGa1−x)2O3 alloys, and heterostructures along various crystal orientations and with different phases. This tutorial summarizes the recent progresses in the epitaxial growth of β-Ga2O3 thin films via different growth methods, with a focus on the growth of Ga2O3 and its compositional alloys by MOCVD. The challenges for the epitaxial development of β-Ga2O3 are discussed, along with the opportunities of future works to enhance the state-of-the-art device performance based on this emerging UWBG semiconductor material system.  more » « less
Award ID(s):
2019753 2231026
NSF-PAR ID:
10436050
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
21
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Ultra-wide bandgap (UWBG) semiconductors are promising for many applications, such as power electronics and deep-ultraviolet photonics. In this research, UWBG β-phase magnesium gallium oxide (MgGaO) thin films with a bandgap of 5.1 eV were grown using low-temperature homo-buffer layers in a plasma-assisted molecular beam epitaxy system. The role of the growth temperature and thickness of low-temperature buffer layer on the quality of the active layer was studied using x-ray diffraction and transmission electron microscopy and by analyzing the properties of metal–semiconductor–metal photodetector devices based on these films. It is found that lower buffer growth temperature at 300 °C leads to higher crystal quality of active layer. For the same low buffer growth temperature, different crystal quality in the active layer is attained with different buffer layer thickness. A buffer layer thickness at 40 nm has the best active layer quality with the highest photo current under 265 nm illumination and long decay time as a result of reduced recombination of photo-generated carriers through fewer defects in the active layer. 
    more » « less
  3. Flexible electronics and mechanically bendable devices based on Group III-N semiconductor materials are emerging; however, there are several challenges in manufacturing, such as cost reduction, device stability and flexibility, and device-performance improvement. To overcome these limitations, it is necessary to replace the brittle and expensive semiconductor wafers with single-crystalline flexible templates for a new-bandgap semiconductor platform. The substrates in the new concept of semiconductor materials have a hybrid structure consisting of a single-crystalline III-N thin film on a flexible metal tape substrate which provides a convenient and scalable roll-to-roll deposition process. We present a detailed study of a unique and simple direct epitaxial growth technique for crystallinity transformation to deliver single-crystalline GaN thin film with highly oriented grains along both a -axis and c -axis directions on a flexible and polycrystalline copper tape. A 2-dimensional (2D) graphene having the same atomic configuration as the (0001) basal plane of wurtzite structure is employed as a seed layer which plays a key role in following the III-N epitaxy growth. The DC reactive magnetron sputtering method is then applied to deposit an AlN layer under optimized conditions to achieve preferred-orientation growth. Finally, single-crystalline GaN layers (∼1 μm) are epitaxially grown using metal organic chemical vapor deposition (MOCVD) on the biaxially-textured buffer layer. The flexible single-crystalline GaN film obtained using this method provides a new way for a wide-bandgap semiconductor platform pursuing flexible, high-performance, and versatile device technology. 
    more » « less
  4. Metalorganic chemical vapor deposition (MOCVD) growths of β-Ga 2 O 3 on on-axis (100) Ga 2 O 3 substrates are comprehensively investigated. Key MOCVD growth parameters including growth temperature, pressure, group VI/III molar flow rate ratio, and carrier gas flow rate are mapped. The dependence of the growth conditions is correlated with surface morphology, growth rate, and electron transport properties of the MOCVD grown (100) β-Ga 2 O 3 thin films. Lower shroud gas (argon) flow is found to enhance the surface smoothness with higher room temperature (RT) electron Hall mobility. The growth rate of the films decreases but with an increase of electron mobility as the VI/III molar flow rate ratio increases. Although no significant variation on the surface morphologies is observed at different growth temperatures, the general trend of electron Hall mobilities are found to increase with increasing growth temperature. The growth rates reduce significantly with uniform surface morphologies as the chamber pressure increases. By tuning the silane flow rate, the controllable carrier concentration of (100) β-Ga 2 O 3 thin films between low-10 17  cm −3 and low-10 18  cm −3 was achieved. Under optimized growth condition, an (100) β-Ga 2 O 3 thin film with RMS roughness value of 1.64 nm and a RT mobility of 24 cm 2 /Vs at a carrier concentration of 7.0 × 10 17  cm −3 are demonstrated. The mobilities are primarily limited by the twin lamellae and stacking faults defects generated from the growth interface. Atomic resolution scanning transmission electron microscopy reveals the formation of twin boundary defects in the films, resulting in the degradation of crystalline quality. Results from this work provide fundamental understanding of the MOCVD epitaxy of (100) β-Ga 2 O 3 on on-axis Ga 2 O 3 substrates and the dependence of the material properties on growth conditions. The limitation of electron transport properties of the (100) β-Ga 2 O 3 thin films below 25 cm 2 /Vs is attributed to the formation of incoherent boundaries (twin lamellae) and stacking faults grown along the on-axis (100) crystal orientation. 
    more » « less
  5. Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.

     
    more » « less