skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on July 29, 2024

Title: A polydisperse model for thixotropic elasto‐viscoplastic suspensions of aggregating particles using population balances

An improved population balance‐based rheological constitutive framework for polydisperse aggregating suspensions is derived by incorporating detailed models for orthokinetic and perikinetic aggregation and shear breakage processes. The framework accounts for critical properties such as dynamic arrest, viscoelasticity, kinematic hardening, thixotropy, and yield stress to generate a full range of thixotropic elasto‐viscoplastic (TEVP) response. Additionally, the model is thermodynamically consistent because the dynamics and timescales are completely determined by internal structural and kinetic variables. The model connects the rheological response to the structural descriptors such as the size distribution of agglomerates, mean sizes, fractal dimension, and agglomerate volume fraction. Predictions are compared against a wide range of shear rheology measurements data for model thixotropic suspensions of fumed silica and carbon black, including large amplitude oscillatory shear (LAOS), as well as ultra‐small angle neutron scattering under steady shear (Rheo‐uSANS).

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mud is a suspension of fine-grained particles (sand, silt, and clay) in water. The interaction of clay minerals in mud gives rise to complex rheological behaviors, such as yield stress, thixotropy, and viscoelasticity. Here, we experimentally examine the flow behaviors of kaolinite clay suspensions, a model mud, using steady shear rheometry. The flow curves exhibit both yield stress and rheological hysteresis behaviors for various kaolinite volume fractions (ϕk). Further understanding of these behaviors requires fitting to existing constitutive models, which is challenging due to numerous fitting parameters. To this end, we employ a Bayesian inference method, Markov chain Monte Carlo, to fit the experimental flow curves to a microstructural viscoelastic model. The method allows us to estimate the rheological properties of the clay suspensions, such as viscosity, yield stress, and relaxation time scales. The comparison of the inherent relaxation time scales suggests that kaolinite clay suspensions are strongly viscoelastic and weakly thixotropic at relatively low ϕk, while being almost inelastic and purely thixotropic at high ϕk. Overall, our results provide a framework for predictive model fitting to elucidate the rheological behaviors of natural materials and other structured fluids.

    more » « less
  2. There is no universal model for thixotropy, and comparing thixotropic effects between different fluids is a subtle yet challenging problem. We introduce a generalized (model-insensitive) framework for comparing thixotropic properties based on thixotropic spectra. A superposition of exponential stress modes distributed over thixotropic time scales is used to quantify buildup and breakdown times and mode strengths in response to step-change input. This mathematical framework is tested with several experimental step-shear rate data on colloidal suspensions. Low-dimensional metrics based on moments of the distribution reveal characteristic average thixotropic properties, which are visualized on Ashby-style diagrams. This method outlines a framework for describing thixotropy across a diverse range of microstructures, supporting scientific studies as well as material selection for engineering design applications.

    more » « less
  3. Abstract

    Vat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

    more » « less
  4. Discrete-particle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the large-to-small particle radius ratio ranging from [Formula: see text] (nearly monodisperse) to [Formula: see text], and the large particle fraction of the total solid loading with values [Formula: see text], 0.5, and 0.85. Particle-scale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for short-range lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction [Formula: see text] with shear stress [Formula: see text] are reported. At a fixed volume fraction [Formula: see text], bidispersity decreases the suspension relative viscosity [Formula: see text], where [Formula: see text] is the suspension viscosity and [Formula: see text] is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at [Formula: see text], but instead decreases with further increase of [Formula: see text] to [Formula: see text]. The second normal stress difference [Formula: see text] acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the mean-square displacement in the velocity gradient direction. The relative viscosity [Formula: see text] of bidisperse rate-dependent suspensions can be predicted by a power law linking it to [Formula: see text], [Formula: see text] in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction [Formula: see text]. 
    more » « less
  5. Bacterial suspensions—a premier example of active fluids—show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes. 
    more » « less