This paper proposes an on-line remedial action scheme (OLRAS) in order to mitigate the voltage violations caused by false data injection attacks (FDIAs) targeting under load tap changing (ULTC) transformers in smart distribution systems. The FDIA framework contains two different phases. In the attack phase, distribution system operator (DSO), being in attacker's shoe, considers cyberattack scenarios through compromising the results of volt-var optimization problem in a radial distribution grid modified with distributed energy resources (DERs) such as photovoltaic (PV) units and wind turbines (WTs). The outcome of the attack phase will be the compromised voltage profile of the distribution grid showing different rates of voltage violations. In the reaction phase, the DSO rapidly identifies a customized distribution feeder reconfiguration (CDFR) in order to update the flows of active and reactive power throughout the targeted distribution system and recover the voltage profile. The objective functions of the proposed CDFR are defined to minimize the impacts of such cyberattacks targeting ULTCs within distribution grids. This will empower DSOs to react to severe cyberattacks, bypassing the detection stage, and address the voltage violations in a timely manner. The effectiveness of the proposed OLRAS is validated on an IEEE test system.
more »
« less
Recent Advances in Cyberattack Detection and Mitigation Techniques for Renewable Photovoltaic Distributed Energy CPS
Cyberattacks targeted to the energy cyber-physical system (ECPS), also known as the smart grid, could interrupt the electricity supply with major ramifications. Attackers identify and exploit any vulnerable portion of the energy power grid, including the inverters with solar-powered photovoltaic (PV) panels. PV presents unique challenges as electricity consumers have also become providers of solar energy for utilities. As mandates require increased PV penetration across the world for positive environmental impacts, increased cyberattacks targeted at PV systems impact reliability and efficiency within the ECPS. The new technologies continuously being introduced to manage the ECPS and ensure bi-directional communications and energy flow between components also lead to more attack surfaces, system vulnerabilities, and heightened malicious attacks. Data integrity attacks are increasing within PV systems. In this paper, we present a survey of different methods that are proposed and explored for identifying and preventing cyberattacks targeted at PV systems. The attack detection methods include voltage control, data diodes, and voltage measurement algorithms. Furthermore, we present blockchain, cyber switching, and other attack mitigation techniques for PV systems.
more »
« less
- Award ID(s):
- 1828811
- PAR ID:
- 10436354
- Date Published:
- Journal Name:
- Computing Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory.more » « less
-
As an alternative, cleaner energy source, solar power is becoming a much bigger player in how electricity is generated and consumed. To assess how economically-viable solar power is in comparison to other forms of electricity, factors such as the return on investment (ROI) can be calculated. In addition, based on the average lifetime of an average photovoltaic (PV) system, energy purchase reduction, and revenue that can be generated by selling excess electricity back to the power grid, the economic viability of solar energy can be determined. The capital and commissioning cost of a PV system will continue to be a major factor in how viable a PV system will be. Thus, observing the trend in PV system costs over the past years will yield a point of grid parity, when solar becomes competitive with existing forms of energy generation, and show the most beneficial time frame for the customer to install the PV system. This paper seeks to provide some insight on how economic using solar energy can be.more » « less
-
null (Ed.)Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO.more » « less
-
False data injection (FDI) attacks targeting under-load tap changing (ULTC) transformers pose a significant threat to smart distribution networks by exploiting vulnerabilities in the volt-var optimization (VVO) process, leading to potential undervoltage and voltage collapse. The increased integration of renewable energy and cyber-physical systems has expanded the attack surface, making traditional detection methods inadequate. For example, in 2023, attacks on utilities and decentralized components in the United States rose by 200%, with overall cyber threats increasing by 104%, highlighting growing vulnerabilities in distribution systems. To this end, this article proposes a two-stage remediation framework for decentralized FDI (DFDI) attacks targeting ULTC transformers. In the attack stage, vulnerabilities in ULTCs and voltage regulators are scrutinized, risking voltage collapse or blackouts in the distribution system. In the remediation stage, the distribution system operator focuses on non-attacked ULTCs, voltage regulators, distributed generation (DG) units, and smart homes to minimize reliance on compromised components. In this regard, a distinctive formulation of distribution network resilience and load management (DNRLM) problem is introduced to identify a resilient network topology and determine a situational power balance strategy. The proposed framework focuses on minimizing the system's reliance on the attacked ULTCs and voltage regulator components, thereby avoiding the intended voltage collapse caused by such DFDIs. The simulation results verify that the proposed method reduces the voltage collapse proximity index by over 60%, enhancing system resilience under DFDI attacks.more » « less