skip to main content


This content will become publicly available on May 1, 2024

Title: An experimental baseline for ice-till strain indicators
Subglacial till can deform when overriding ice exerts shear traction at the ice–till interface. This deformation leaves a strain signature in the till, aligning grains in the direction of ice flow and producing a range of diagnostic microstructures. Constraining the conditions that produce these kinematic indicators is key to interpreting the myriad of features found in basal till deposits. Here, we used a cryogenic ring shear device with transparent sample chamber walls to slip a ring of temperate ice over a till bed from which we examined the strain signature in the till. We used cameras mounted to the side of the ring shear and bead strings inserted in the till to estimate the strain distribution within the till layer. Following the completion of the experiment, we extracted and analyzed anisotropy of magnetic susceptibility (AMS) samples and created thin sections of the till bed for microstructure analysis. We then compared the AMS and microstructures with the observed strain history to examine the relationship between kinematic indicators and strain in a setting where shear traction is supplied by ice. We found that AMS fabrics show a high degree of clustering in regions of high strain near the ice–till interface. In the uppermost zone of till, k 1 eigenvector azimuths are generally aligned with ice flow, and S 1 eigenvalues are high. However, S 1 eigenvalues and the alignment of the k 1 eigenvector with ice flow decrease nonlinearly with distance from the ice–till interface. There is a high occurrence of microshears in the zone of increased deformation.  more » « less
Award ID(s):
2012958 2012468
NSF-PAR ID:
10436700
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Earth Sciences
Volume:
60
Issue:
5
ISSN:
0008-4077
Page Range / eLocation ID:
537 to 549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many subglacial environments consist of a fine‐grained, deformable sediment bed, known as till, hosting an active hydrological system that routes meltwater. Observations show that the till undergoes substantial shear deformation as a result of the motion of the overlying ice. The deformation of the till, coupled with the dynamics of the hydrological system, is further affected by the substantial strain rate variability in subglacial conditions resulting from spatial heterogeneity at the bed. However, it is not clear if the relatively low magnitudes of strain rates affect the bed structure or its hydrology. We study how laterally varying shear along the ice‐bed interface alters sediment porosity and affects the flux of meltwater through the pore spaces. We use a discrete element model consisting of a collection of spherical, elasto‐frictional grains with water‐saturated pore spaces to simulate the deformation of the granular bed. Our results show that a deforming granular layer exhibits substantial spatial variability in porosity in the pseudo‐static shear regime, where shear strain rates are relatively low. In particular, laterally varying shear at the shearing interface creates a narrow zone of elevated porosity which has increased susceptibility to plastic failure. Despite the changes in porosity, our analysis suggests that the pore pressure equilibrates near‐instantaneously relative to the deformation at critical state, inhibiting potential strain rate dependence of the deformation caused by bed hardening or weakening resulting from pore pressure changes. We relate shear variation to porosity evolution and drainage element formation in actively deforming subglacial tills.

     
    more » « less
  2. Abstract Recent seismic measurements from upper Thwaites Glacier indicate that the bed-type variability is closely related to the along-flow basal topography. In high-relief subglacial highlands, stoss sides of topographic highs have a relatively higher acoustic impedance (‘hard’ bed) with lower acoustic impedance (‘soft’ till) on lee sides. This pattern is similar to observations of many deglaciated terrains. Subglacial hydraulic-potential gradient and its divergence show a tendency for water to diverge over the stoss sides and converge into the lee sides. Convergence favors a thicker or more widespread water system, which can more efficiently decouple ice from the underlying till. Under such circumstances, till deformation does occur but, fluxes are relatively small. Till carried from the lee sides onto stoss sides of downstream bumps should couple to the ice more efficiently, increasing the ability for transport by till deformation. In turn, this suggests that steady-state till transport can be achieved if the stoss-side till layer is thin or discontinuous. In addition, the large basal shear stress generated in the highlands seems too high for a bed lubricated by a continuous although thin deforming till, suggesting till discontinuity, which would allow debris-laden ice to erode bedrock on stoss sides, supplying additional till for transport. 
    more » « less
  3. Abstract. The inception of the Laramide Orogeny in Southern California is marked by a Late Cretaceous arc flare-up in the Southern California Batholith (SCB) that was temporally and spatially associated with syn-plutonic development of a regionally extensive, transpressional shear zone system. This ~200 km-long system is the best analog for the shear zones that extend into the middle crust beneath the major lithotectonic block-bounding faults of the San Andreas Fault system. We focus on the Black Belt Shear Zone, which preserves an ancient brittle-ductile transition (BDT), and is exposed in the SE corner of the San Gabriel lithotectonic block. The mid-crustal Black Belt Shear Zone forms a ~1.5-2 km thick zone of mylonites developed within hornblende and biotite tonalites and diorites. Mylonitic fabrics strike SW and dip moderately to the NW, and kinematic indicators from the Black Belt Shear Zone generally give oblique top-to-SW, sinistral thrust-sense motion (present-day geometry). U-Pb zircon ages of host rock to the Black Belt mylonites demonstrate crystallization at ~86 Ma and metamorphism at ~79 Ma at temperatures ~753 ¡C. Syn-kinematic, metamorphic titanite grains aligned with mylonitic foliation in the Black Belt Shear Zone give an age of ~83 Ma. These data indicate syn-magmatic sinistral-reverse, transpressional deformation. The BDT rocks in the Black Belt Shear Zone are characterized by a ~10 m-thick section of high strain mylonites interlayered with co-planar cataclasite and pseudotachylyte (pst) seams. Microstructural and electron backscatter diffraction (EBSD) analysis shows that the mylonites and cataclasites are mutually overprinted, and pst seams are overprinted by mylonitic fabric development. Pst survivor clasts show the same shear sense as the host mylonite, and this kinematic compatibility demonstrates a continuum between brittle and ductile deformation that is punctuated by high strain rate events resulting in the production of frictional melt. EBSD analysis reveals a decreasing content of hydrous maÞc mineral phases in host mylonite with increasing proximity to pst seams. This suggests that pst was generated by melting of hornblende and/or biotite, implying that coeval development of mid-crustal mylonites and pst does not require anhydrous melting conditions. Rather, the production of pst may liberate water, implying that BDT rock rheology is affected by transient pulses of water inßux and strain rate increases. 
    more » « less
  4. Abstract

    Low Velocity Zones (LVZs) with anomalously highVp‐Vsratios occur along the downdip extents of subduction megathrusts in most modern subduction zones and are collocated with complex seismic and transient deformation patterns. LVZs are attributed to high pore fluid pressures, but the spatial correlation between the LVZ and the subduction interface, as well as the rock types that define them, remain unclear. We characterize the seismic signature of a fossil subduction interface shear zone in northern California that is sourced from the same depth range as modern LVZs. Deformation was distributed across 3 km of dominantly metasedimentary rocks, with periodic strain localization to km‐scale ultramafic lenses. We estimate seismic velocities accounting for mineral and fracture anisotropy, constrained by microstructural observations and field measurements, resulting in aVp/Vsof 2.0. Comparable thicknesses and velocities suggest that LVZs represent, at least in part, the subduction interface shear zone.

     
    more » « less
  5. Abstract Basal ice of glaciers and ice sheets frequently contains a well-developed stratification of distinct, semi-continuous, alternating layers of debris-poor and debris-rich ice. Here, the nature and distribution of shear within stratified basal ice are assessed through the anisotropy of magnetic susceptibility (AMS) of samples collected from Matanuska Glacier, Alaska. Generally, the AMS reveals consistent moderate-to-strong fabrics reflecting simple shear in the direction of ice flow; however, AMS is also dependent upon debris content and morphology. While sample anisotropy is statistically similar throughout the sampled section, debris-rich basal ice composed of semi-continuous mm-scale layers (the stratified facies ) possesses well-defined triaxial to oblate fabrics reflecting shear in the direction of ice flow, whereas debris-poor ice containing mm-scale star-shaped silt aggregates (the suspended facies ) possesses nearly isotropic fabrics. Thus, deformation within the stratified basal ice appears concentrated in debris-rich layers, likely the result of decreased crystal size and greater availability of unfrozen water associated with high debris content. These results suggest that variations in debris-content over small spatial scales influence ice rheology and deformation in the basal zone. 
    more » « less