Understanding the effects of climatic upheavals during the Early to Late Cretaceous transition is essential for characterizing the tempo of tectonically driven landscape modification and biological interchange; yet, current chronostratigraphic frameworks are too imprecise, even on regional scales, to address many outstanding questions. This includes the Mussentuchit Member of the uppermost Cedar Mountain Formation, central Utah (southwestern United States), which could provide crucial insights into these impacts within the Western Interior Basin of North America yet remains imprecisely constrained. Here, we present high-precision U-Pb zircon dates from four primary ash beds distributed across ~50 km in central Utah that better constrain the timing of deposition of the Mussentuchit Member and the age of entombed fossils. Ages for ash beds are interpreted through a combination of Bayesian depositional age estimation and stratigraphic age modeling, resulting in posterior ages from 99.490 + 0.057/–0.050 to 98.905 + 0.158/–0.183 Ma. The age model predicts probabilistic ages for fossil localities between the ashes, including new ages for Moros intrepidus, Siats meekerorum, and several undescribed ornithischian dinosaur species of key interest for understanding the timing of faunal turnover in western North America. This new geochronology for the Mussentuchit Member offers unprecedented temporal insights into a volatile interval in Earth’s history.
more »
« less
An early-diverging iguanodontian (Dinosauria: Rhabdodontomorpha) from the Late Cretaceous of North America
Intensifying macrovertebrate reconnaissance together with refined age-dating of mid-Cretaceous assemblages in recent decades is producing a more nuanced understanding of the impact of the Cretaceous Thermal Maximum on terrestrial ecosystems. Here we report discovery of a new early-diverging ornithopod, Iani smithi gen. et sp. nov., from the Cenomanian-age lower Mussentuchit Member, Cedar Mountain Formation of Utah, USA. The single known specimen of this species (NCSM 29373) includes a well-preserved, disarticulated skull, partial axial column, and portions of the appendicular skeleton. Apomorphic traits are concentrated on the frontal, squamosal, braincase, and premaxilla, including the presence of three premaxillary teeth. Phylogenetic analyses using parsimony and Bayesian inference posit Iani as a North American rhabdodontomorph based on the presence of enlarged, spatulate teeth bearing up to 12 secondary ridges, maxillary teeth lacking a primary ridge, a laterally depressed maxillary process of the jugal, and a posttemporal foramen restricted to the squamosal, among other features. Prior to this discovery, neornithischian paleobiodiversity in the Mussentuchit Member was based primarily on isolated teeth, with only the hadrosauroid Eolambia caroljonesa named from macrovertebrate remains. Documentation of a possible rhabdodontomorph in this assemblage, along with published reports of an as-of-yet undescribed thescelosaurid, and fragmentary remains of ankylosaurians and ceratopsians confirms a minimum of five, cohabiting neornithischian clades in earliest Late Cretaceous terrestrial ecosystems of North America. Due to poor preservation and exploration of Turonian–Santonian assemblages, the timing of rhabdodontomorph extirpation in the Western Interior Basin is, as of yet, unclear. However, Iani documents survival of all three major clades of Early Cretaceous neornithischians (Thescelosauridae, Rhabdodontomorpha, and Ankylopollexia) into the dawn of the Late Cretaceous of North America.
more »
« less
- PAR ID:
- 10436815
- Editor(s):
- Liu, Jun
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0286042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thescelosaurines are a group of early diverging, ornithischian dinosaurs notable for their conservative bauplans and mosaic of primitive features. Although abundant within the latest Cretaceous ecosystems of North America, their record is poor to absent in earlier assemblages, leaving a large gap in our understanding of their evolution, origins, and ecological roles. Here we report a new small bodied thescelosaurine—Fona herzogaegen. et sp. nov.—from the Mussentuchit Member of the Cedar Mountain Formation, Utah, USA.Fona herzogaeis represented by multiple individuals, representing one of the most comprehensive skeletal assemblages of a small bodied, early diverging ornithischian described from North America to date. Phylogenetic analysis recoversFonaas the earliest member of Thescelosaurinae, minimally containingOryctodromeus, and all three species ofThescelosaurus, revealing the clade was well‐established in North America by as early as the Cenomanian, and distinct from, yet continental cohabitants with, their sister clade, Orodrominae. To date, orodromines and thescelosaurines have not been found together within a single North American ecosystem, suggesting different habitat preferences or competitive exclusion. Osteological observations reveal extensive intraspecific variation across cranial and postcranial elements, and a number of anatomical similarities withOryctodromeus, suggesting a shared semi‐fossorial lifestyle.more » « less
-
Claessens, Leon (Ed.)Reconstructing the evolution, diversity, and paleobiogeography of North America’s Late Cretaceous dinosaur assemblages require spatiotemporally contiguous data; however, there remains a spatial and temporal disparity in dinosaur data on the continent. The rarity of vertebrate-bearing sedimentary deposits representing Turonian–Santonian ecosystems, and the relatively sparse record of dinosaurs from the eastern portion of the continent, present persistent challenges for studies of North American dinosaur evolution. Here we describe an assemblage of ornithomimosaurian materials from the Santonian Eutaw Formation of Mississippi. Morphological data coupled with osteohistological growth markers suggest the presence of two taxa of different body sizes, including one of the largest ornithomimosaurians known worldwide. The regression predicts a femoral circumference and a body mass of the Eutaw individuals similar to or greater than that of large-bodied ornithomimosaurs, Beishanlong grandis , and Gallimimus bullatus . The paleoosteohistology of MMNS VP-6332 demonstrates that the individual was at least ten years of age (similar to B . grandis [~375 kg, 13–14 years old at death]). Additional pedal elements share some intriguing features with ornithomimosaurs, yet suggest a larger-body size closer to Deinocheirus mirificus . The presence of a large-bodied ornithomimosaur in this region during this time is consistent with the relatively recent discoveries of early-diverging, large-bodied ornithomimosaurs from mid-Cretaceous strata of Laurasia ( Arkansaurus fridayi and B . grandis ). The smaller Eutaw taxon is represented by a tibia preserving seven growth cycles, with osteohistological indicators of decreasing growth, yet belongs to an individual approaching somatic maturity, suggesting the co-existence of medium- and large-bodied ornithomimosaur taxa during the Late Cretaceous Santonian of North America. The Eutaw ornithomimosaur materials provide key information on the diversity and distribution of North American ornithomimosaurs and Appalachian dinosaurs and fit with broader evidence of multiple cohabiting species of ornithomimosaurian dinosaurs in Late Cretaceous ecosystems of Laurasia.more » « less
-
The “mid-Cretaceous” (~125–80 Ma) was punctuated by major plate-tectonic upheavals resulting in widespread volcanism, mountain-building, eustatic sea-level changes, and climatic shifts that together had a profound impact on terrestrial biotic assemblages. Paleontological evidence suggests terrestrial ecosystems underwent a major restructuring during this interval, yet the pace and pattern are poorly constrained. Current impediments to piecing together the geologic and biological history of the “mid-Cretaceous” include a relative paucity of terrestrial outcrop stemming from this time interval, coupled with a historical understudy of fragmentary strata. In the Western Interior of North America, sedimentary strata of the Turonian–Santonian stages are emerging as key sources of data for refining the timing of ecosystem transformation during the transition from the late-Early to early-Late Cretaceous. In particular, the Moreno Hill Formation (Zuni Basin, New Mexico) is especially important for detailing the timing of the rise of iconic Late Cretaceous vertebrate faunas. This study presents the first systematic geochronological framework for key strata within the Moreno Hill Formation. Based on the double-dating of (U-Pb) detrital zircons, via CA-TIMS and LA-ICP-MS, we interpret two distinct depositional phases of the Moreno Hill Formation (initial deposition after 90.9 Ma (middle Turonian) and subsequent deposition after 88.6 Ma (early Coniacian)), younger than previously postulated based on correlations with marine biostratigraphy. Sediment and the co-occurring youthful subset of zircons are sourced from the southwestern Cordilleran Arc and Mogollon Highlands, which fed into the landward portion of the Gallup Delta (the Moreno Hill Formation) via northeasterly flowing channel complexes. This work greatly strengthens linkages to other early Late Cretaceous strata across the Western Interior.more » « less
-
The diversity of mid-Cretaceous tyrannosauroids is poorly understood. We describe a partial tyrannosauroid femur from the Albian–Cenomanian Wayan Formation of eastern Idaho that helps to fill in an important spatiotemporal gap in the North American record of tyrannosaurs. This specimen, consisting of the proximal half of the bone, is morphologically similar to the femur of Moros intrepidus, a small-bodied tyrannosauroid from the Cenomanian Mussentuchit Member of the Cedar Mountain Formation of Utah, but not referable to this taxon. The Wayan femur lacks an autapomorphy diagnostic for Moros intrepidus, indicating the presence of a previously unrecognized tyrannosauroid taxon in the early Late Cretaceous of Laramidia. Histological results indicate that, at the time of death, this individual was at least five years old, skeletally immature, and undergoing growth at a moderate rate. The addition of this tyrannosauroid to the Wayan-Vaughn Assemblage provides additional evidence for the widespread distribution of various tyrannosauroid taxa in Laramidia during the early Late Cretaceous.more » « less
An official website of the United States government

