We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $$3$$ . As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $$3$$ -folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy.
more »
« less
Einstein tori and crooked surfaces
Abstract In hyperbolic space, the angle of intersection and distance classify pairs of totally geodesic hyperplanes. A similar algebraic invariant classifies pairs of hyperplanes in the Einstein universe. In dimension 3, symplectic splittings of a 4-dimensional real symplectic vector space model Einstein hyperplanes and the invariant is a determinant. The classification contributes to a complete disjointness criterion for crooked surfaces in the 3-dimensional Einstein universe.
more »
« less
- Award ID(s):
- 1709791
- PAR ID:
- 10437224
- Date Published:
- Journal Name:
- Advances in Geometry
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1615-715X
- Page Range / eLocation ID:
- 237 to 250
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables (having weakly vanishing Poisson bracket with each first-class constraint), observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom (‘Stueckelberg’) are inequivalent to those of massive electromagnetism without gauge freedom (‘Proca’). The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent massive electromagnetisms. For General Relativity, G generates 4-dimensional Lie derivatives for solutions. The Lie derivative compares different space-time points with the same coordinate value in different coordinate systems, like 1 a.m. summer time versus 1 a.m. standard time, so a vanishing Lie derivative implies constancy rather than covariance. Requiring equivalent observables for equivalent formulations of massive gravity confirms that G must generate the 4-dimensional Lie derivative (not 0) for observables. These separate results indicate that observables are invariant under internal gauge symmetries but covariant under external gauge symmetries, but can this bifurcated definition work for mixed theories such as Einstein–Maxwell theory? Pons, Salisbury and Shepley have studied G for Einstein–Yang–Mills. For Einstein–Maxwell, both 𝐹𝜇𝜈 and 𝑔𝜇𝜈 are invariant under electromagnetic gauge transformations and covariant (changing by a Lie derivative) under 4-dimensional coordinate transformations. Using the bifurcated definition, these quantities count as observables, as one would expect on non-Hamiltonian grounds.more » « less
-
Abstract Many results about mass partitions are proved by lifting $$\mathds {R}^d$$ to a higher-dimensional space and dividing the higher-dimensional space into pieces. We extend such methods to use lifting arguments to polyhedral surfaces. Among other results, we prove the existence of equipartitions of $d+1$ measures in $$\mathds {R}^d$$ by parallel hyperplanes and of $d+2$ measures in $$\mathds {R}^d$$ by concentric spheres. For measures whose supports are sufficiently well separated, we prove results where one can cut a fixed (possibly different) fraction of each measure either by parallel hyperplanes, concentric spheres, convex polyhedral surfaces of few facets, or convex polytopes with few vertices.more » « less
-
We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology.more » « less
-
This is the third in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field K, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the special linear group. This is more subtle than the results for the general linear and symplectic groups obtained in the first two papers because the arc space of the corresponding affine quotients can be nonreduced.more » « less
An official website of the United States government

