Abstract We note that the recent polynomial proofs of the spherical and complex plank covering problems by Zhao and Ortega-Moreno give some general information on zeros of real and complex polynomials restricted to the unit sphere. As a corollary of these results, we establish several generalizations of the celebrated Bang plank covering theorem. We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and an even stronger polynomial version for the complex projective space. Specifically, for the ball, we show that for every real nonzero $$d$$-variate polynomial $$P$$ of degree $$n$$, there exists a point in the unit $$d$$-dimensional ball at distance at least $1/n$ from the zero set of the polynomial $$P$$. Using the polynomial approach, we also prove the strengthening of the Fejes Tóth zone conjecture on covering a sphere by spherical segments, closed parts of the sphere between two parallel hyperplanes. In particular, we show that the sum of angular widths of spherical segments covering the whole sphere is at least $$\pi $$.
more »
« less
Lifting Methods in Mass Partition Problems
Abstract Many results about mass partitions are proved by lifting $$\mathds {R}^d$$ to a higher-dimensional space and dividing the higher-dimensional space into pieces. We extend such methods to use lifting arguments to polyhedral surfaces. Among other results, we prove the existence of equipartitions of $d+1$ measures in $$\mathds {R}^d$$ by parallel hyperplanes and of $d+2$ measures in $$\mathds {R}^d$$ by concentric spheres. For measures whose supports are sufficiently well separated, we prove results where one can cut a fixed (possibly different) fraction of each measure either by parallel hyperplanes, concentric spheres, convex polyhedral surfaces of few facets, or convex polytopes with few vertices.
more »
« less
- Award ID(s):
- 2054419
- PAR ID:
- 10550269
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2023
- Issue:
- 16
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 14103 to 14130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the log-rank conjecture from the perspective of point-hyperplane incidence geometry. We formulate the following conjecture: Given a point set in ℝ d that is covered by constant-sized sets of parallel hyperplanes, there exists an affine subspace that accounts for a large (i.e., 2 –polylog( d ) ) fraction of the incidences, in the sense of containing a large fraction of the points and being contained in a large fraction of the hyperplanes. In other words, the point-hyperplane incidence graph for such configurations has a large complete bipartite subgraph. Alternatively, our conjecture may be interpreted linear-algebraically as follows: Any rank- d matrix containing at most O (1) distinct entries in each column contains a submatrix of fractional size 2 –polylog( d ) , in which each column is constant. We prove that our conjecture is equivalent to the log-rank conjecture; the crucial ingredient of this proof is a reduction from bounds for parallel k -partitions to bounds for parallel ( k -1)-partitions. We also introduce an (apparent) strengthening of the conjecture, which relaxes the requirements that the sets of hyperplanes be parallel. Motivated by the connections above, we revisit well-studied questions in point-hyperplane incidence geometry without structural assumptions (i.e., the existence of partitions). We give an elementary argument for the existence of complete bipartite subgraphs of density Ω (ε 2 d / d ) in any d -dimensional configuration with incidence density ε, qualitatively matching previous results proved using sophisticated geometric techniques. We also improve an upper-bound construction of Apfelbaum and Sharir [ 2 ], yielding a configuration whose complete bipartite subgraphs are exponentially small and whose incidence density is Ω (1/√ d ). Finally, we discuss various constructions (due to others) of products of Boolean matrices which yield configurations with incidence density Ω (1) and complete bipartite subgraph density 2 -Ω (√ d ) , and pose several questions for this special case in the alternative language of extremal set combinatorics. Our framework and results may help shed light on the difficulty of improving Lovett’s Õ(√ rank( f )) bound [ 20 ] for the log-rank conjecture. In particular, any improvement on this bound would imply the first complete bipartite subgraph size bounds for parallel 3-partitioned configurations which beat our generic bounds for unstructured configurations.more » « less
-
Abstract We consider the convex quadratic optimization problem in$$\mathbb {R}^{n}$$ with indicator variables and arbitrary constraints on the indicators. We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of an$$(n+1) \times (n+1)$$ positive semidefinite constraint (explicitly stated) and linear constraints. In particular, convexification of this class of problems reduces to describing a polyhedral set in an extended formulation. While the vertex representation of this polyhedral set is exponential and an explicit linear inequality description may not be readily available in general, we derive a compact mixed-integer linear formulation whose solutions coincide with the vertices of the polyhedral set. We also give descriptions in the original space of variables: we provide a description based on an infinite number of conic-quadratic inequalities, which are “finitely generated.” In particular, it is possible to characterize whether a given inequality is necessary to describe the convex hull. The new theory presented here unifies several previously established results, and paves the way toward utilizing polyhedral methods to analyze the convex hull of mixed-integer nonlinear sets.more » « less
-
null (Ed.)Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$.more » « less
-
Abstract In hyperbolic space, the angle of intersection and distance classify pairs of totally geodesic hyperplanes. A similar algebraic invariant classifies pairs of hyperplanes in the Einstein universe. In dimension 3, symplectic splittings of a 4-dimensional real symplectic vector space model Einstein hyperplanes and the invariant is a determinant. The classification contributes to a complete disjointness criterion for crooked surfaces in the 3-dimensional Einstein universe.more » « less
An official website of the United States government

