Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation– a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal. Index Terms—Smart City, Sensors, Video Surveillance, Privacy Protection, Object Detection, Deep Learning, TensorRT.
more »
« less
“End-to-end Auditing for Decision Pipelines.”
Many high-stakes policies can be modeled as
a sequence of decisions along a pipeline. We are interested in auditing such pipelines for both Our empirical focus is on policy decisions made by the New efficiency and equity. Using a dataset of over 100,000 crowdsourced resident requests for po- life-tentially hazardous tree maintenance in New York City, we observe a sequence of city government decisions about whether to inspect and work on a reported incident. At each decision in the pipeline, we define parity definitions and tests to identify inefficient, inequitable treatment. Disparities in resource allocation and scheduling across census tracts are reported as preliminary results.
more »
« less
- Award ID(s):
- 1704527
- NSF-PAR ID:
- 10437755
- Date Published:
- Journal Name:
- ICML Workshop on Responsible Decision Making in Dynamic Environments (RDMDE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation – a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal. Index Terms—Smart City, Sensors, Video Surveillance, Privacy Protection, Object Detection, Deep Learning, TensorRT.more » « less
-
Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation – a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal.more » « less
-
Autonomous Mobility-on-Demand (AMoD) systems represent an attractive alternative to existing transportation paradigms, currently challenged by urbanization and increasing travel needs. By centrally controlling a fleet of self-driving vehicles, these systems provide mobility service to customers and are currently starting to be deployed in a number of cities around the world. Current learning-based approaches for controlling AMoD systems are limited to the single-city scenario, whereby the service operator is allowed to take an unlimited amount of operational decisions within the same transportation system. However, real-world system operators can hardly afford to fully re-train AMoD controllers for every city they operate in, as this could result in a high number of poor-quality decisions during training, making the single-city strategy a potentially impractical solution. To address these limitations, we propose to formalize the multi-city AMoD problem through the lens of meta-reinforcement learning (meta-RL) and devise an actor-critic algorithm based on recurrent graph neural networks. In our approach, AMoD controllers are explicitly trained such that a small amount of experience within a new city will produce good system performance. Empirically, we show how control policies learned through meta-RL are able to achieve near-optimal performance on unseen cities by learning rapidly adaptable policies, thus making them more robust not only to novel environments, but also to distribution shifts common in real-world operations, such as special events, unexpected congestion, and dynamic pricing schemes.more » « less
-
null (Ed.)Abstract Target enrichment (such as Hyb-Seq) is a well-established high throughput sequencing method that has been increasingly used for phylogenomic studies. Unfortunately, current widely used pipelines for analysis of target enrichment data do not have a vigorous procedure to remove paralogs in target enrichment data. In this study, we develop a pipeline we call Putative Paralogs Detection (PPD) to better address putative paralogs from enrichment data. The new pipeline is an add-on to the existing HybPiper pipeline, and the entire pipeline applies criteria in both sequence similarity and heterozygous sites at each locus in the identification of paralogs. Users may adjust the thresholds of sequence identity and heterozygous sites to identify and remove paralogs according to the level of phylogenetic divergence of their group of interest. The new pipeline also removes highly polymorphic sites attributed to errors in sequence assembly and gappy regions in the alignment. We demonstrated the value of the new pipeline using empirical data generated from Hyb-Seq and the Angiosperm 353 kit for two woody genera Castanea (Fagaceae, Fagales) and Hamamelis (Hamamelidaceae, Saxifragales). Comparisons of datasets showed that the PPD identified many more putative paralogs than the popular method HybPiper. Comparisons of tree topologies and divergence times showed evident differences between data from HybPiper and data from our new PPD pipeline. We further evaluated the accuracy and error rates of PPD by BLAST mapping of putative paralogous and orthologous sequences to a reference genome sequence of Castanea mollissima. Compared to HybPiper alone, PPD identified substantially more paralogous gene sequences that mapped to multiple regions of the reference genome (31 genes for PPD compared with 4 genes for HybPiper alone). In conjunction with HybPiper, paralogous genes identified by both pipelines can be removed resulting in the construction of more robust orthologous gene datasets for phylogenomic and divergence time analyses. Our study demonstrates the value of Hyb-Seq with data derived from the Angiosperm 353 probe set for elucidating species relationships within a genus, and argues for the importance of additional steps to filter paralogous genes and poorly aligned regions (e.g., as occur through assembly errors), such as our new PPD pipeline described in this study.more » « less