skip to main content


Title: Quantitative Analysis of the Trade-Offs of Colony Formation for Trichodesmium
ABSTRACT There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium . To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium ? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.  more » « less
Award ID(s):
2048373
NSF-PAR ID:
10437780
Author(s) / Creator(s):
; ;
Editor(s):
Veach, Allison
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
10
Issue:
6
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium . 
    more » « less
  2. Gilbert, Jack (Ed.)
    ABSTRACT The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O 2 ) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N 2 fixation and photosynthesis. First, the model indicates that managing cellular O 2 to permit N 2 fixation requires high rates of respiratory O 2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N 2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O 2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N 2 -fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCE Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates an extremely short life span of oxygen-enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis. 
    more » « less
  3. ABSTRACT Mixotrophy, the combination of heterotrophic and autotrophic nutrition modes, is emerging as the rule rather than the exception in marine photosynthetic plankton. Trichodesmium, a prominent diazotroph ubiquitous in the (sub)tropical oceans, is generally considered to obtain energy via autotrophy. While the ability of Trichodesmium to use dissolved organic phosphorus when deprived of inorganic phosphorus sources is well known, the extent to which this important cyanobacterium may benefit from other dissolved organic matter (DOM) resources is unknown. Here we provide evidence of carbon-, nitrogen- and phosphorus-rich DOM molecules enhancing N2 fixation rates and nifH gene expression in natural Trichodesmium colonies collected at two stations in the western tropical South Pacific. Sampling at a third station located in the oligotrophic South Pacific Gyre revealed no Trichodesmium but showed presence of UCYN-B, although no nifH expression was detected. Our results suggest that Trichodesmium behaves mixotrophically in response to certain environmental conditions, providing them with metabolic plasticity and adding up to the view that mixotrophy is widespread among marine microbes. 
    more » « less
  4. Abstract

    The keystone marine nitrogen fixer Trichodesmium thrives in high-dust environments. While laboratory investigations have observed that Trichodesmium colonies can access the essential nutrient iron from dust particles, less clear are the biochemical strategies underlying particle–colony interactions in nature. Here we demonstrate that Trichodesmium colonies engage with mineral particles in the wild with distinct molecular responses. We encountered particle-laden Trichodesmium colonies at a sampling location in the Southern Caribbean Sea; microscopy and synchrotron-based imaging then demonstrated heterogeneous associations with iron oxide and iron-silicate minerals. Metaproteomic analysis of individual colonies by a new low-biomass approach revealed responses in biogeochemically relevant proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper, and zinc. The iron-storage protein ferritin was particularly enriched implying accumulation of mineral-derived iron, and multiple iron acquisition pathways including Fe(II), Fe(III), and Fe-siderophore transporters were engaged. While the particles provided key trace metals such as iron and nickel, there was also evidence that Trichodesmium was altering its strategy to confront increased superoxide production and metal exposure. Chemotaxis regulators also responded to mineral presence suggesting involvement in particle entrainment. These molecular responses are fundamental to Trichodesmium’s ecological success and global biogeochemical impact, and may contribute to the leaching of particulate trace metals with implications for global iron and carbon cycling.

     
    more » « less
  5. Abstract

    Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer.

     
    more » « less