With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students' integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out. We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics.
more »
« less
Cross-lingual articulatory feature information transfer for speech recognition using recurrent progressive neural networks
A system for the lateral transfer of information from end-to-end neural networks recognizing articulatory feature classes to similarly structured networks recognizing phone tokens is here proposed. The system connects recurrent layers of feature detectors pre-trained on a base language to recurrent layers of a phone recognizer for a different target language, this inspired primarily by the progressive neural network scheme. Initial experiments used detectors trained on Bengali speech for four articulatory feature classes—consonant place, consonant manner, vowel height, and vowel backness—attached to phone recognizers for four other Asian languages (Javanese, Nepali, Sinhalese, and Sundanese). While these do not currently suggest consistent performance improvements across different low-resource settings for target languages, irrespective of their genealogic or phonological relatedness to Bengali, they do suggest the need for further trials with different language sets, altered data sources and data configurations, and slightly altered network setups.
more »
« less
- Award ID(s):
- 1910319
- PAR ID:
- 10437892
- Date Published:
- Journal Name:
- Proceedings of Interspeech 2022
- Page Range / eLocation ID:
- 2298 to 2302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the widespread adoption of the Next Generation Science Standards (NGSS), science teachers and online learning environments face the challenge of evaluating students’ integration of different dimensions of science learning. Recent advances in representation learning in natural language processing have proven effective across many natural language processing tasks, but a rigorous evaluation of the relative merits of these methods for scoring complex constructed response formative assessments has not previously been carried out. We present a detailed empirical investigation of feature-based, recurrent neural network, and pre-trained transformer models on scoring content in real-world formative assessment data. We demonstrate that recent neural methods can rival or exceed the performance of feature-based methods. We also provide evidence that different classes of neural models take advantage of different learning cues, and pre-trained transformer models may be more robust to spurious, dataset-specific learning cues, better reflecting scoring rubrics.more » « less
-
Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as Dyck-k, the language consisting of well-nested parentheses of k types. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process Dyck-(k, D), the subset of Dyck-k with depth bounded by D, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with D+1 layers and O(log k) memory size (per token per layer) that recognizes Dyck-(k, D), and a soft-attention network with two layers and O(log k) memory size that generates Dyck-(k, D). Experiments show that self-attention networks trained on Dyck-(k, D) generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.more » « less
-
Acoustic word embeddings are fixed-dimensional representations of variable-length speech segments. In settings where unlabelled speech is the only available resource, such embeddings can be used in "zero-resource" speech search, indexing and discovery systems. Here we propose to train a single supervised embedding model on labelled data from multiple well-resourced languages and then apply it to unseen zero-resource languages. For this transfer learning approach, we consider two multilingual recurrent neural network models: a discriminative classifier trained on the joint vocabularies of all training languages, and a correspondence autoencoder trained to reconstruct word pairs. We test these using a word discrimination task on six target zero-resource languages. When trained on seven well-resourced languages, both models perform similarly and outperform unsupervised models trained on the zero-resource languages. With just a single training language, the second model works better, but performance depends more on the particular training--testing language pair.more » « less
-
We introduce a novel framework for delexicalized dependency parsing in a new language. We show that useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous work’s interpretable typological features that require parsed corpora or expert categorization of the language. Our best method improved attachment scores on held-out test languages by an average of 5.6 percentage points over past work that does not inspect the unparsed data (McDonald et al., 2011), and by 20.7 points over past “grammar induction” work that does not use training languages (Naseem et al., 2010).more » « less
An official website of the United States government

