The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm−1coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.
The impact of stacking and phonon environment on energy transfer in organic chromophores: computational insights
Energy transfer in organic materials is extensively studied due to many applications in optoelectronics. The electronic and vibrational relaxations within molecular assemblies can be influenced by stacking arrangements or additions of a backbone that unites them. Here, we present the computational study of the photoexcitation dynamics of a perylene diimide monomer, and face-to-face stacked dimer and trimer. By using non-adiabatic excited-state molecular dynamics simulations, we show that the non-radiative relaxation is accelerated with the number of stacked molecules. This effect is explained by differences in the energy splitting between states that impacts their corresponding nonadiabatic couplings. Additionally, our analysis of the vibronic dynamics reveals that the passage through the different conical intersections that participate in the relaxation of the stacked systems, activate a positive feedback mechanism. This effect involves a narrow set of vibrational normal modes that accelerate the process by increasing the efficiency of its vibronic dynamics. In contrast, an addition of a biologically inspired backbone slows down the relaxation rate due to its participation in the vibronic dynamics of the molecular stacking arrangements. Our results suggest the stacking arrangements and common backbones as strategies to modulate the efficiency of electronic and vibrational relaxation of diimide-based systems and other molecular aggregates.
more »
« less
- Award ID(s):
- 1847774
- NSF-PAR ID:
- 10438686
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 11
- Issue:
- 16
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 5297 to 5306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active ( E )-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2 , is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm −1 . Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 . We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.more » « less
-
Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Q x and Q y states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Q x to Q y is found to be 11 ps −1 . Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38–50 ps −1 . We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.more » « less
-
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule’s excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.more » « less
-
A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows us to analyse ground state dynamics and to sample and measure different conformations attained by flexible molecular systems in solution. An explicit mixed quantum mechanics/molecular mechanics (QM/MM) approach is employed for the evaluation of the necessary electronic excited state energies and transition dipole moments. The method is applied towards a study of the highly flexible water-solvated adenine–adenine monophosphate (ApA), a system featuring two interacting adenine moieties that display various intermolecular arrangements, known to deeply affect their photochemical outcome. Molecular dynamics simulations and cluster analysis have been used to select the molecular conformations, reducing the complexity of the flexible ApA conformational space. By using our sum-over-states (SOS) approach to obtain the 2DES spectra for each of these selected conformations, we can discern spectral changes and relate them to specific nuclear arrangements: close lying π-stacked bases exhibit a splitting of their respective 1 L a signal traces; T-stacked bases exhibit the appearance of charge transfer states in the low-energy Vis probing window while displaying no 1 L a splitting, being particularly favoured when promoting amino to 5-ring interactions; unstacked and distant adenine moieties exhibit signals similar to those of the adenine monomer, as is expected for non-interacting nucleobases. 2DES maps reveal the spectral fingerprints associated with specific molecular conformations, and are thus a promising option to enable their quantitative spectroscopic detection beyond standard 1D pump-probe techniques. This is expected to aid the understanding of how nucleobase aggregation controls and modulates the photostability and photo-damage of extended DNA/RNA systems.more » « less