skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charge‐Density‐Wave Order And Electronic Phase Transitions in a Dilute D ‐Band Semiconductor
Abstract As one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi‐one‐dimensional (quasi‐1D) metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron‐phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron‐hole coupling or Mott physics, to explain. In this study, we combined electrical transport, synchrotron X‐ray diffraction and density‐functional theory (DFT) calculations to investigate CDW order and a series of hysteretic phase transitions in a dilute d ‐band semiconductor, BaTiS 3 . Our experimental and theoretical findings suggest that the observed CDW order and phase transitions in BaTiS 3 may be attributed to both electron‐phonon coupling and non‐negligible electron‐electron interactions in the system. Our work highlights BaTiS 3 as a unique platform to explore CDW physics and novel electronic phases in the dilute filling limit and could open new opportunities for developing novel electronic devices. This article is protected by copyright. All rights reserved  more » « less
Award ID(s):
2122070 2122071
PAR ID:
10438690
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    This work presents a detailed study of the electronic structure, phonon dispersion, Z2 invariant calculation, and Fermi surface of the newly discovered kagome superconductor CsV3Sb5, using density functional theory. The phonon dispersion in the pristine state reveals two negative modes at the M and L points of the Brillouin zone, indicating lattice instability. CsV3Sb5 transitions into a structurally stable 2 × 2 × 1 charge density wave (CDW) phase, confirmed by positive phonon modes. The electronic band structure shows several Dirac points near the Fermi level, with a narrow gap opening due to spin–orbit coupling (SOC), although the effect of SOC on other bands is minimal. In the pristine phase, this material exhibits a quasi-2D cylindrical Fermi surface, which undergoes reconstruction in the CDW phase. We calculated quantum oscillation frequencies using Onsager’s relation, finding good agreement with experimental results in the CDW phase. To explore the topological properties of CsV3Sb5, we computed the Z2 invariant in both pristine and CDW phases, resulting in a value of (ν0; ν1ν2ν3) = (1; 000), suggesting the strong topological nature of this material. Our detailed analysis of phonon dispersion, electronic bands, Fermi surface mapping, and Z2 invariant provides insights into the topological properties, CDW order, and unconventional superconductivity in AV3Sb5 (A = K, Rb, and Cs). 
    more » « less
  2. Abstract Phase change materials, which show different electrical characteristics across the phase transitions, have attracted considerable research attention for their potential electronic device applications. Materials with metal‐to‐insulator or charge density wave (CDW) transitions such as VO2and 1T‐TaS2have demonstrated voltage oscillations due to their robust bi‐state resistive switching behavior with some basic neuronal characteristics. BaTiS3is a small bandgap ternary chalcogenide that has recently reported the emergence of CDW order below 245 K. Here, the discovery of DC voltage / current‐induced reversible threshold switching in BaTiS3devices between a CDW phase and a room temperature semiconducting phase is reported. The resistive switching behavior is consistent with a Joule heating scheme and sustained voltage oscillations with a frequency of up to 1 kHz are demonstrated by leveraging the CDW phase transition and the associated negative differential resistance. Strategies of reducing channel sizes and improving thermal management may further improve the device's performance. The findings establish BaTiS3as a promising CDW material for future electronic device applications, especially for energy‐efficient neuromorphic computing. 
    more » « less
  3. Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet—NiPS 3 , from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni 2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS 3 . Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets. 
    more » « less
  4. Kagome metals have emerged as a frontier in condensed matter physics due to their potential to host exotic quantum states. Among these, CsV3Sb5has attracted significant attention for the unusual coexistence of charge density wave (CDW) order and unconventional superconductivity, presenting an ideal system for exploring the emergent phenomena from the interplay of phonons, electronic fluctuations, and topological effects. The nature of CDW formation in CsV3Sb5is unconventional and has sparked considerable debate. In this study, we examine the origin of the CDW state via ab initio finite-temperature simulations of the lattice dynamics. Through a comparative study of CsV3Sb5and 2H-NbSe2, we demonstrate that the experimental absence of phonon softening—a hallmark of conventional CDW transition—in CsV3Sb5along with the presence of a weakly first-order transition, can be attributed to quantum zero-point atomic motion. This zero-point motion smears the free energy landscape of CDW, effectively stabilizing the pristine structure even below the CDW transition temperature. We argue that this surprising behavior could cause coexistence of pristine and CDW structures across the transition and lead to a weak first-order transition. Our predicted lattice dynamical behavior is supported by coherent phonon spectroscopy in single-crystalline CsV3Sb5. Our results provide crucial insights into the formation mechanism of CDW materials that exhibit little to no phonon softening, including cuprates, and highlight the surprising role of quantum effects in emergent properties of relatively heavy-element materials like CsV3Sb5
    more » « less
  5. We performed high-pressure x-ray diffraction (XRD), Raman, and transport measurements combined with first-principles calculations to investigate the behavior of tin diselenide (SnSe2) under compression. The obtained single-crystal XRD data indicate the formation of a (1/3,1/3,0)-type superlattice above 17 GPa. According to our density functional theory results, the pressure-induced transition to the commensurate periodic lattice distortion (PLD) phase is due to the combined effect of strong Fermi surface nesting and electron-phonon coupling at a momentum wave vector q=(1/3,1/3,0). In contrast, similar PLD transitions associated with charge density wave (CDW) orderings in transition metal dichalcogenides (TMDs) do not involve significant Fermi surface nesting. The discovered pressure-induced PLD is quite remarkable, as pressure usually suppresses CDW phases in related materials. Our findings, therefore, provide new playgrounds to study the intricate mechanisms governing the emergence of PLD in TMD-related materials. 
    more » « less