skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parameter-robust preconditioners for Biot’s model
Abstract This work presents an overview of the most relevant results obtained by the authors regarding the numerical solution of the Biot’s consolidation problem by preconditioning techniques. The emphasis here is on the design of parameter-robust preconditioners for the efficient solution of the algebraic system of equations resulting after proper discretization of such poroelastic problems. The classical two- and three-field formulations of the problem are considered, and block preconditioners are presented for some of the discretization schemes that have been proposed by the authors for these formulations. These discretizations have been proved to be well-posed with respect to the physical and discretization parameters, what provides a framework to develop preconditioners that are robust with respect to such parameters as well. In particular, we construct both norm-equivalent (block diagonal) and field-of-value-equivalent (block triangular) preconditioners, which are proved to be parameter-robust. The theoretical results on this parameter-robustness are demonstrated by considering typical benchmark problems in the literature for Biot’s model.  more » « less
Award ID(s):
2208267
PAR ID:
10438889
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
SeMA Journal
Volume:
81
Issue:
1
ISSN:
2254-3902
Format(s):
Medium: X Size: p. 51-80
Size(s):
p. 51-80
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a computational study of several preconditioning techniques for the GMRES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized with the stochastic Galerkin method. The clear block structure of the system matrix arising from this type of discretization motivates the analysis of preconditioners designed according to a field-splitting strategy of the stochastic variables. This approach is inspired by a similar procedure used within the framework of physics based preconditioners for deterministic problems, and its application to stochastic PDEs represents the main novelty of this work. Our numerical investigation highlights the superior properties of the field-split type preconditioners over other existing strategies in terms of computational time and stochastic parameter dependence. 
    more » « less
  2. Wave propagation is fundamental to applications including natural resource exploration, nuclear fusion research, and military defense, among others. However, developing accurate and efficient numerical algorithms for solving time-harmonic wave propagation problems is notoriously difficult. One difficulty is that classical discretization techniques (e.g., Galerkin finite elements, finite difference, etc.) yield indefinite discrete systems that preclude the use of many scalable solution algorithms. Significant progress has been made to develop specialized preconditioners for high-frequency wave propagation problems but robust and scalable solvers for general problems, including non-homogenous media and complex geometries, remain elusive. An alternative approach is to use minimum residual discretization methods—that yield Hermitian positive-definite discrete systems—and may be amenable to more standard preconditioners. Indeed, popularization of the first-order system least-squares methodology (FOSLS) was driven by the applicability of geometric and algebraic multigrid to otherwise indefinite problems. However, for wave propagation problems, FOSLS is known to be highly dissipative and is thus less competitive in the high-frequency regime. The discontinuous Petrov–Galerkin (DPG) method of Demkowicz and Gopalakrishnan is a minimum residual finite element method with several additional attractive properties: mesh-independent stability, a built-in error indicator, and applicability to a number of variational formulations. In the context of high-frequency wave propagation, the ultraweak DPG formulation has been observed to produce pollution error roughly commensurate to Galerkin discretizations. DPG discretizations may thus deliver accuracy typical of classical discretization techniques, but result in Hermitian positive-definite discrete systems that are often more amenable to preconditioning. A multigrid preconditioner for DPG systems, developed in the dissertation work of S. Petrides, was shown to scale efficiently in a shared-memory implementation. The primary objective of this dissertation is development of an efficient, distributed implementation of the DPG multigrid solver (DPG-MG). The distributed DPG-MG solver developed in this work will be demonstrated to be massively scalable, enabling solution of three-dimensional problems with O(10¹²) degrees of freedom on up to 460 000 CPU cores, an unprecedented scale for high-frequency wave propagation. The scalability of the DPG-MG solver will be further combined with hp-adaptivity to enable efficient solution of challenging real-world high-frequency wave propagation problems including optical fiber modeling, simulation of RF heating in tokamak devices, and seismic simulation. These applications include complex three-dimensional geometries, heterogeneous and anisotropic media, and localized features; demonstrating the robustness and versatility of the solver and tools developed in this dissertation. 
    more » « less
  3. Abstract The reduced basis method (RBM) empowers repeated and rapid evaluation of parametrized partial differential equations through an offline–online decomposition, a.k.a. a learning‐execution process. A key feature of the method is a greedy algorithm repeatedly scanning the training set, a fine discretization of the parameter domain, to identify the next dimension of the parameter‐induced solution manifold along which we expand the surrogate solution space. Although successfully applied to problems with fairly high parametric dimensions, the challenge is that this scanning cost dominates the offline cost due to it being proportional to the cardinality of the training set which is exponential with respect to the parameter dimension. In this work, we review three recent attempts in effectively delaying this curse of dimensionality, and propose two new hybrid strategies through successive refinement and multilevel maximization of the error estimate over the training set. All five offline‐enhanced methods and the original greedy algorithm are tested and compared on two types of problems: the thermal block problem and the geometrically parameterized Helmholtz problem. 
    more » « less
  4. We study unsaturated poroelasticity, i.e. , coupled hydro-mechanical processes in variably saturated porous media, here modeled by a non-linear extension of Biot’s well-known quasi-static consolidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified version of the general model for multi-phase flow in deformable porous media, obtained under similar assumptions as usually considered for Richards’ equation. In this work, existence of weak solutions is established in several steps involving a numerical approximation of the problem using a physically-motivated regularization and a finite element/finite volume discretization. Eventually, solvability of the original problem is proved by a combination of the Rothe and Galerkin methods, and further compactness arguments. This approach in particular provides the convergence of the numerical discretization to a regularized model for unsaturated poroelasticity. The final existence result holds under non-degeneracy conditions and natural continuity properties for the constitutive relations. The assumptions are demonstrated to be reasonable in view of geotechnical applications. 
    more » « less
  5. Abstract This paper is about learning the parameter-to-solution map for systems of partial differential equations (PDEs) that depend on a potentially large number of parameters covering all PDE types for which a stable variational formulation (SVF) can be found. A central constituent is the notion of variationally correct residual loss function, meaning that its value is always uniformly proportional to the squared solution error in the norm determined by the SVF, hence facilitating rigorous a posteriori accuracy control. It is based on a single variational problem, associated with the family of parameter-dependent fibre problems, employing the notion of direct integrals of Hilbert spaces. Since in its original form the loss function is given as a dual test norm of the residual; a central objective is to develop equivalent computable expressions. The first critical role is played by hybrid hypothesis classes, whose elements are piecewise polynomial in (low-dimensional) spatio-temporal variables with parameter-dependent coefficients that can be represented, for example, by neural networks. Second, working with first-order SVFs we distinguish two scenarios: (i) the test space can be chosen as an $$L_{2}$$-space (such as for elliptic or parabolic problems) so that residuals can be evaluated directly as elements of $$L_{2}$$; (ii) when trial and test spaces for the fibre problems depend on the parameters (as for transport equations) we use ultra-weak formulations. In combination with discontinuous Petrov–Galerkin concepts the hybrid format is then instrumental to arrive at variationally correct computable residual loss functions. Our findings are illustrated by numerical experiments representing (i) and (ii), namely elliptic boundary value problems with piecewise constant diffusion coefficients and pure transport equations with parameter-dependent convection fields. 
    more » « less