Repeat RNA sequences self-associate to form condensates. Simulations of a coarse-grained single-interaction site model for (CAG)n (n = 30 and 31) show that the salt-dependent free energy gap, ΔGS, between the ground (perfect hairpin) and the excited state (slipped hairpin (SH) with one CAG overhang) of the monomer for (n even) is the primary factor that determines the rates and yield of self-assembly. For odd n, the free energy (GS) of the ground state, which is an SH, is used to predict the self-association kinetics. As the monovalent salt concentration, CS, increases, ΔGS and GS increase, which decreases the rates of dimer formation. In contrast, ΔGS for shuffled sequences, with the same length and sequence composition as (CAG)31, is larger, which suppresses their propensities to aggregate. Although demonstrated explicitly for (CAG) polymers, the finding of inverse correlation between the free energy gap and RNA aggregation is general. 
                        more » 
                        « less   
                    
                            
                            Odd–even disparity in the population of slipped hairpins in RNA repeat sequences with implications for phase separation
                        
                    
    
            Low-complexity nucleotide repeat sequences, which are implicated in several neurological disorders, undergo liquid–liquid phase separation (LLPS) provided the number of repeat units, n , exceeds a critical value. Here, we establish a link between the folding landscapes of the monomers of trinucleotide repeats and their propensity to self-associate. Simulations using a coarse-grained Self-Organized Polymer (SOP) model for (CAG) n repeats in monovalent salt solutions reproduce experimentally measured melting temperatures, which are available only for small n . By extending the simulations to large n , we show that the free-energy gap, ΔG S , between the ground state (GS) and slipped hairpin (SH) states is a predictor of aggregation propensity. The GS for even n is a perfect hairpin (PH), whereas it is a SH when n is odd. The value of ΔG S (zero for odd n ) is larger for even n than for odd n . As a result, the rate of dimer formation is slower in (CAG) 30 relative to (CAG) 31 , thus linking ΔG S to RNA–RNA association. The yield of the dimer decreases dramatically, compared to the wild type, in mutant sequences in which the population of the SH decreases substantially. Association between RNA chains is preceded by a transition to the SH even if the GS is a PH. The finding that the excitation spectrum—which depends on the exact sequence, n , and ionic conditions—is a predictor of self-association should also hold for other RNAs (mRNA for example) that undergo LLPS. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900093
- PAR ID:
- 10438921
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 24
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single- molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.more » « less
- 
            Trinucleotide repeats are common in the human genome and can undergo changes in repeat number and cause length-dependent chromosome fragility. Expanded CAG repeats have been linked to over 14 human diseases and are considered hotspots for breakage and genomic rearrangement. Here we describe two Saccharomyces cerevisiae based assays that evaluate the rate of chromosome breakage that occurs within a repeat tract (fragility), with variations that allow the role of transcription to be evaluated. The first fragility assay utilizes end-loss and subsequent telomere addition as the main mode of repair of a yeast artificial chromosome (YAC). The second fragility assay relies on the fact that a chromosomal break stimulates recombination-mediated repair. A PCR-based assay can be used to evaluate instability of the repeat in the same conditions used to measure repeat fragility. These assays have contributed to understanding the genetic mechanisms that cause chromosome breaks and tract-length changes at unstable trinucleotide repeats.more » « less
- 
            Expanded CAG/CTG repeats are sites of DNA damage, leading to changes in repeat length. To determine how ssDNA gap filling affects repeat instability, we inserted (CAG)70 or (CTG)70 repeats into a single-strand annealing (SSA) assay system such that resection and filling in the ssDNA gap would occur across the repeat tract. After resection, when the CTG sequence was the single-stranded template for fill-in synthesis, repeat contractions were elevated and the ssDNA created a fragile site that led to large deletions involving flanking homologous sequences. In contrast, resection was inhibited when CTG was on the resected strand, resulting in repeat expansions. Deleting Rad9, the ortholog of 53BP1, rescued repeat instability and lost viability by increasing resection and fill-in speed. Deletion of Rad51 increased CTG contractions and decreased survival, implicating Rad51 in protecting ssDNA during gap filling. Taken together, DNA sequence within a single-stranded gap determines repair kinetics, fragility, and repeat instability.more » « less
- 
            Abstract Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid–liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA–protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    