skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photo-induced spatiotemporal bending of shape memory polymer beams
Abstract In response to external stimuli, such as heat, light, or magnetic fields, stimuli-responsive soft materials can change their current configuration to a new equilibrium state through non-equilibrium kinetic processes, including reaction, diffusion, and viscoelastic relaxation, which generates novel spatiotemporal shape-morphing behavior. Using a photothermal shape memory polymer (SMP) cantilever beam as a model system, this work analytically, numerically, and experimentally studies its non-equilibrium kinetic processes and spatiotemporal bending under light illumination. We establish a thermomechanical model for SMPs capturing the concurrent non-equilibrium processes of heat transfer and viscoelastic relaxation, which induces inhomogeneous temperature and strain distributions through the thickness of the beam, resulting in its bending and unbending. By varying the key dimensionless parameters, we theoretically and experimentally observe different types of bending dynamics. Moreover, our theory takes into consideration changes in the angles of incidence caused by extensive beam bending, and demonstrates that this effect can dramatically delay the bending due to reduction of the effective light intensity, which is further validated experimentally. This work demonstrates programmable and predictable spatiotemporal morphing of SMPs, and provides design guidelines for SMP morphing structures and robots.  more » « less
Award ID(s):
2048219
PAR ID:
10439539
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Smart Materials and Structures
Volume:
31
Issue:
12
ISSN:
0964-1726
Page Range / eLocation ID:
125011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shape memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers, due to their useful and fascinating functionality. One of the most common and studied external stimuli for SMPs is temperature; other stimuli include electric fields, light, magnetic fields, water, and irradiation. Solutions for SMPs have also been extensively studied in the past decade. In this research, we review, consolidate, and report the major efforts and findings documented in the SMP literature, according to different external stimuli. The corresponding mechanisms, constitutive models, and properties (i.e., mechanical, electrical, optical, shape, etc.) of the SMPs in response to different stimulus methods are then reviewed. Next, this research presents and categorizes up-to-date studies on the application of SMPs in dynamic building structures and components. Following this, we discuss the need for studying SMPs in terms of kinetic building applications, especially about building energy saving purposes, and review recent two-way SMPs and their potential for use in such applications. This review covers a number of current advances in SMPs, with a view towards applications in kinetic building engineering. 
    more » « less
  2. null (Ed.)
    We present a novel optimization framework for optimal design of structures exhibiting memory characteristics by incorporating shape memory polymers (SMPs). SMPs are a class of memory materials capable of undergoing and recovering applied deformations. A finite-element analysis incorporating the additive decomposition of small strain is implemented to analyze and predict temperature-dependent memory characteristics of SMPs. The finite element method consists of a viscoelastic material modelling combined with a temperature-dependent strain storage mechanism, giving SMPs their characteristic property. The thermo-mechanical characteristics of SMPs are exploited to actuate structural deflection to enable morphing toward a target shape. A time-dependent adjoint sensitivity formulation implemented through a recursive algorithm is used to calculate the gradients required for the topology optimization algorithm. Multimaterial topology optimization combined with the thermo-mechanical programming cycle is used to optimally distribute the active and passive SMP materials within the design domain. This allows us to tailor the response of the structures to design them with specific target displacements, by exploiting the difference in the glass-transition temperatures of the two SMP materials. Forward analysis and sensitivity calculations are combined in a PETSc-based optimization framework to enable efficient multi-functional, multimaterial structural design with controlled deformations. 
    more » « less
  3. Abstract Shape memory polymer (SMP) systems exhibiting semicrystalline- elastomer blends, such as thermoplastic polyurethane and polylactic acid have been well studied, but their use in biomedical shape memory applications has been limited by their high activation temperature. SMPs are capable of deformation and recovery through the activation of an external stimuli, such as temperature. Critical criteria for SMPs used in biomedical applications is achieving a stimulus temperature close to 37 °C while still experiencing sufficient shape recovery. A polymer’s glass transition temperature has been well defined as the SMP system’s activation temperature and therefore should be decreased to achieve a decreased activation temperature. In this work, a well-known, biocompatible plasticizer, polyethylene oxide (PEO), was added to thermoplastic polyurethane (TPU)—polylactic acid (PLA) SMP blends to observe the plasticizing effect on the structural, thermal, mechanical, and shape memory properties of the polymer blends. Additionally, the geometry of the fabricated SMP samples was tailored to further enhance the shape memory effect through a bowtie honeycomb structure. Our results suggest that the addition of PEO into the SMP system may be an effective method for decreasing the polymer’s glass transition temperature through the alteration of the polymer chain structure. With the addition of 30% PEO, the glass transition temperature of the TPU/PLA blend was successfully decreased from 62.4 °C to 34.6 °C while achieving 86.5% shape recovery when activated at 37 °C, which is only a 5% decrease in shape recovery when activated at 50 °C. These results suggest that the addition of a biocompatible plasticizer may overcome the limitation of employing temperature activated SMP systems in biomedical applications, and enhances the potential of these materials for reconfigurable structures, energy dissipation systems, and structural health monitoring (SHM) in civil engineering applications. 
    more » « less
  4. Shape memory polymer (SMP) systems exhibiting semicrystalline- elastomer blends, such as thermoplastic polyurethane and polylactic acid have been well studied, but their use in biomedical shape memory applications has been limited by their high activation temperature. SMPs are capable of deformation and recovery through the activation of an external stimuli, such as temperature. Critical criteria for SMPs used in biomedical applications is achieving a stimulus temperature close to 37 °C while still experiencing sufficient shape recovery. A polymer’s glass transition temperature has been well defined as the SMP system’s activation temperature and therefore should be decreased to achieve a decreased activation temperature. In this work, a well-known, biocompatible plasticizer, polyethylene oxide (PEO), was added to thermoplastic polyurethane (TPU)—polylactic acid (PLA) SMP blends to observe the plasticizing effect on the structural, thermal, mechanical, and shape memory properties of the polymer blends. Additionally, the geometry of the fabricated SMP samples was tailored to further enhance the shape memory effect through a bowtie honeycomb structure. Our results suggest that the addition of PEO into theSMPsystem may be an effective method for decreasing the polymer’s glass transition temperature through the alteration of the polymer chain structure. With the addition of 30% PEO, the glass transition temperature of the TPU/PLA blend was successfully decreased from 62.4 °Cto 34.6 °Cwhile achieving 86.5% shape recovery when activated at 37 °C, which is only a5%decrease in shape recovery when activated at 50 °C. These results suggest that the addition of a biocompatible plasticizer may overcome the limitation of employing temperature activated SMP systems in biomedical applications, and enhances the potential of these materials for reconfigurable structures, energy dissipation systems, and structural health monitoring (SHM) in civil engineering applications. 
    more » « less
  5. Abstract Focused ultrasound (FUS) presents unique advantages for noninvasive localized heating, crucial for controlled shape recovery in shape memory polymers (SMPs), especially in biomedical applications. To enhance FUS-driven actuation efficiency, we propose boron nitride (BN)-infused SMP composites (SMPCs) tailored for targeted biomedical interventions. Using tert-butyl acrylate (tBA) and di(ethylene glycol) dimethacrylate as base materials, we integrated BN fillers at varying concentrations (1, 5, and 10 wt.%). A thorough characterization was carried out, including dynamic mechanical analysis, scanning electron microscopy, uniaxial tensile testing, and swelling study. These results show that increasing the BN content improves shape recovery efficiency significantly. Specifically, the 10 wt.% BN composites outperformed plain SMP in terms of shape recovery ratio when activated with FUS, and the highest shape recovery ratio can achieve 75%. However, higher BN content decreases crosslinking density and stiffness, as shown by a lower Young’s modulus and glass transition temperature. This study demonstrates the promise of BN-infused SMPCs for advanced applications in biomedical application, where noninvasive spatiotemporal actuation of SMPs is required. 
    more » « less