Abstract Quantile regression for right‐ or left‐censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank‐based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank‐based tests for quantile regression coefficients at a single quantile or over a quantile region. A model‐based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.
more »
« less
Debiased inference on heterogeneous quantile treatment effects with regression rank scores
Abstract Understanding treatment effect heterogeneity is vital to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modelling such heterogeneity. We propose a new method for inference on heterogeneous quantile treatment effects (HQTE) in the presence of high-dimensional covariates. Our estimator combines an ℓ1-penalised regression adjustment with a quantile-specific bias correction scheme based on rank scores. We study the theoretical properties of this estimator, including weak convergence and semi-parametric efficiency of the estimated HQTE process. We illustrate the finite-sample performance of our approach through simulations and an empirical example, dealing with the differential effect of statin usage for lowering low-density lipoprotein cholesterol levels for the Alzheimer’s disease patients who participated in the UK Biobank study.
more »
« less
- Award ID(s):
- 2310578
- PAR ID:
- 10439599
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- Volume:
- 85
- Issue:
- 5
- ISSN:
- 1369-7412
- Format(s):
- Medium: X Size: p. 1561-1588
- Size(s):
- p. 1561-1588
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose an efficient estimator for the coefficients in censored quantile regression using the envelope model. The envelope model uses dimension reduction techniques to identify material and immaterial components in the data, and forms the estimator based only on the material component, thus reducing the variability of estimation. We will demonstrate the guaranteed asymptotic efficiency gain of our proposed envelope estimator over the traditional estimator for censored quantile regression. Our analysis begins with the local weighing approach that traditionally relies on semiparametric ‐estimation involving the conditional Kaplan–Meier estimator. We will instead invoke the independent identically distributed (i.i.d.) representation of the Kaplan–Meier estimator, which eliminates this infinite‐dimensional nuisance and transforms our objective function in ‐estimation into a ‐process indexed by only an Euclidean parameter. The modified ‐estimation problem becomes entirely parametric and hence more amenable to analysis. We will also reconsider the i.i.d. representation of the conditional Kaplan–Meier estimator.more » « less
-
The National Alzheimer's Coordinating Center Uniform Data Set includes test results from a battery of cognitive exams. Motivated by the need to model the cognitive ability of low‐performing patients we create a composite score from ten tests and propose to model this score using a partially linear quantile regression model for longitudinal studies with non‐ignorable dropouts. Quantile regression allows for modeling non‐central tendencies. The partially linear model accommodates nonlinear relationships between some of the covariates and cognitive ability. The data set includes patients that leave the study prior to the conclusion. Ignoring such dropouts will result in biased estimates if the probability of dropout depends on the response. To handle this challenge, we propose a weighted quantile regression estimator where the weights are inversely proportional to the estimated probability a subject remains in the study. We prove that this weighted estimator is a consistent and efficient estimator of both linear and nonlinear effects.more » « less
-
Abstract ℓ 1 -penalized quantile regression (QR) is widely used for analysing high-dimensional data with heterogeneity. It is now recognized that the ℓ1-penalty introduces non-negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized M-estimation with strongly convex loss functions have been well studied, the extant literature on QR is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non-smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution-type smoothed QR with iteratively reweighted ℓ1-regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted ℓ1-penalized smoothed QR estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.more » « less
-
The conditional average treatment effect (CATE) is the best measure of individual causal effects given baseline covariates. However, the CATE only captures the (conditional) average, and can overlook risks and tail events, which are important to treatment choice. In aggregate analyses, this is usually addressed by measuring the distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by f-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on covariates using any regression learner. Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class. Our method is robust in that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth.more » « less
An official website of the United States government
