skip to main content


Title: A Study of Practical Radar-based Nighttime Respiration Monitoring at Home
Radar-based solutions support practical and longi- tudinal respiration monitoring owing to their non-invasive nature. Nighttime respiration monitoring at home provides rich and high- quality data, mostly free of motion disturbances because the user is quasi-stationary during sleep, and 6-8 hours per day rather than tens of minutes, promising for longitudinal studies. However, most existing work was conducted in laboratory environments for short periods, thus the environment, user motions, and postures can differ significantly from those in real homes. To understand how to obtain quality, overnight respiration data in real homes, we conduct a thorough experimental study with 6 participants of various sleep postures over 9 nights in 4 real-home testbeds, each configured with 3–4 sensors around the bed. We first compare the performance among four typical sensor placements around the bed to understand which is the optimal location for high quality data. Then we explore methods to track range bins with high quality signals as occasional user motions change the distance thus signal qualities, and different aspects of amplitude and phase data to further improve the signal quality using metrics of the periodicity-to-noise ratio (PNR) and end-to-end (e2e) accuracy. The experiments demonstrate that the sensor placement is a vital factor, and the bedside is an optimal choice considering both accuracy and ease of deployment (2.65 bpm error at 80 percentile), also consistent among four typical sleep postures. We also observe that, a proper range bin selection method can improve the PNR by 2 dB at 75-percentile, and e2e accuracy by 0.9 bpm at 80-percentile. Both amplitude and phase data have comparable e2e accuracy, while phase is more sensitive to motions thus suitable for nighttime movement detection. Based on these discoveries, we develop a few simple practical guidelines useful for the community to achieve high quality, longitudinal home- based overnight respiration monitoring.  more » « less
Award ID(s):
1951880
NSF-PAR ID:
10439719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Radar conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 24/7 continuous recording of in-home daily trajectories is informative for health status assessment (e.g., monitoring Alzheimer’s, dementia based on behavior patterns). Indoor device-free localization/tracking are ideal because no user efforts on wearing devices are needed. However, prior work mainly focused on improving the localization accuracy. They relied on well-calibrated sensor placements, which require hours of intensive manual setup and respective expertise, feasible only at small scale and by mostly re- searchers themselves. Scaling the deployments to tens or hundreds of real homes, however, would incur prohibitive manual efforts, and become infeasible for layman users. We present SCALING, a plug-and-play indoor trajectory monitoring system that layman users can easily setup by walking a one-minute loop trajectory after placing radar nodes on walls. It uses a self calibrating algorithm that estimates sensor locations through their distance measurements to the person walking the trajectory, a trivial effort without taxing layman users physically or cognitively. We evaluate SCALING via simulations and two testbeds (in lab and home configurations of sizes 3 × 6 sq m and 4.5 × 8.5 sq m). Experimental results demonstrate that SCALING outperformed the baseline using the approximate multidimensional scaling (MDS, the most relevant method in the context of self calibration) by 3.5 m/1.6 m in 80-percentile error of self calibration and tracking,respectively.Notably,only1% degradation in performance has been observed with SCALING compared to the classical multilateration with known sensor locations (anchors), which costs hours of intensive calibrating effort. 
    more » « less
  2. While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline. 
    more » « less
  3. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less
  4. In this work, we proposeMiSleep, a deep learning augmented millimeter-wave (mmWave) wireless system to monitor human sleep posture by predicting the 3D location of the body joints of a person during sleep. Unlike existing vision- or wearable-based sleep monitoring systems,MiSleepis not privacy-invasive and does not require users to wear anything on their body.MiSleepleverages knowledge of human anatomical features and deep learning models to solve challenges in existing mmWave devices with low-resolution and aliased imaging, and specularity in signals.MiSleepbuilds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since a practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction,MiSleepdesigns a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluateMiSleepwith real data collected from Commercial-Off-The-Shelf mmWave devices for 8 volunteers of diverse ages, genders, and heights performing different sleep postures. We observe thatMiSleepidentifies the toss-turn events start time and duration within 1.25 s and 1.7 s of the ground truth, respectively, and predicts the 3D location of body joints with a median error of 1.3 cm only and can perform even under the blankets, with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications.

     
    more » « less
  5. Continuous monitoring of respiration provides invaluable insights about health status management (e.g., the progression or recovery of diseases). Recent advancements in radio frequency (RF) technologies show promise for continuous respiration monitoring by virtue of their non-invasive nature, and preferred over wearable solutions that require frequent charging and continuous wearing. However, RF signals are susceptible to large body movements, which are inevitable in real life, challenging the robustness of respiration monitoring. While many existing methods have been proposed to achieve robust RF-based respiration monitoring, their reliance on supervised data limits their potential for broad applicability. In this context, we propose, RF-Q, an unsupervised/self-supervised model to achieve signal quality assessment and quality-aware estimation for robust RF-based respiration monitoring. RF-Q uses the recon- struction error of an autoencoder (AE) neural network to quantify the quality of respiratory information in RF signals without the need for data labeling. With the combination of the quantified sig- nal quality and reconstructed signal in a weighted fusion, we are able to achieve improved robustness of RF respiration monitor- ing. We demonstrate that, instead of applying sophisticated models devised with respective expertise using a considerable amount of labeled data, by just quantifying the signal quality in an unsupervised manner we can significantly boost the average end-to-end (e2e) respiratory rate estimation accuracy of a baseline by an improvement ratio of 2.75, higher than the gain of 1.94 achieved by a supervised baseline method that excludes distorted data. 
    more » « less