skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Study of Practical Radar-based Nighttime Respiration Monitoring at Home
Radar-based solutions support practical and longi- tudinal respiration monitoring owing to their non-invasive nature. Nighttime respiration monitoring at home provides rich and high- quality data, mostly free of motion disturbances because the user is quasi-stationary during sleep, and 6-8 hours per day rather than tens of minutes, promising for longitudinal studies. However, most existing work was conducted in laboratory environments for short periods, thus the environment, user motions, and postures can differ significantly from those in real homes. To understand how to obtain quality, overnight respiration data in real homes, we conduct a thorough experimental study with 6 participants of various sleep postures over 9 nights in 4 real-home testbeds, each configured with 3–4 sensors around the bed. We first compare the performance among four typical sensor placements around the bed to understand which is the optimal location for high quality data. Then we explore methods to track range bins with high quality signals as occasional user motions change the distance thus signal qualities, and different aspects of amplitude and phase data to further improve the signal quality using metrics of the periodicity-to-noise ratio (PNR) and end-to-end (e2e) accuracy. The experiments demonstrate that the sensor placement is a vital factor, and the bedside is an optimal choice considering both accuracy and ease of deployment (2.65 bpm error at 80 percentile), also consistent among four typical sleep postures. We also observe that, a proper range bin selection method can improve the PNR by 2 dB at 75-percentile, and e2e accuracy by 0.9 bpm at 80-percentile. Both amplitude and phase data have comparable e2e accuracy, while phase is more sensitive to motions thus suitable for nighttime movement detection. Based on these discoveries, we develop a few simple practical guidelines useful for the community to achieve high quality, longitudinal home- based overnight respiration monitoring.  more » « less
Award ID(s):
1951880
PAR ID:
10439719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Radar conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sleep is a vital physiological state that significantly impacts overall health. Continuous monitoring of sleep posture, heart rate, respiratory rate, and body movement is crucial for diagnosing and managing sleep disorders. Current monitoring solutions often disrupt natural sleep due to discomfort or raise privacy and instrumentation concerns. We introduce PillowSense, a fabric-based sleep monitoring system seamlessly integrated into a pillowcase. PillowSense utilizes a dual-layer fabric design. The top layer comprises conductive fabrics for sensing electrocardiogram (ECG) and surface electromyogram (sEMG), while the bottom layer features pressure-sensitive fabrics to monitor sleep location and movement. The system processes ECG and sEMG signals sequentially to infer multiple sleep variables and incorporates an adversarial neural network to enhance posture classification accuracy. We fabricate prototypes using off-the-shelf hardware and conduct both lab-based and in-the-wild longitudinal user studies to evaluate the system's effectiveness. Across 151 nights and 912.2 hours of real-world sleep data, the system achieves an F1 score of 88% for classifying seven sleep postures, and clinically-acceptable accuracy in vital sign monitoring. PillowSense's comfort, washability, and robustness in multi-user scenarios underscore its potential for unobtrusive, large-scale sleep monitoring. 
    more » « less
  2. While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline. 
    more » « less
  3. In-bed postures offer valuable information about an individual's sleep quality and overall health conditions, particularly for patients with sleep apnea. However, current in-bed posture classification systems lack privacy-friendly and easy-to-install options. Furthermore, existing solutions do not consider variations between patients and are typically trained only once, neglecting the utilization of time consistency and unlabeled data from new patients. To address these limitations, this paper builds on a seismic sensor to introduce a novel sleep posture framework, which comprises two main components, namely, the Multi-Granularity Supervised Contrastive Learning (MGSCL) module and the ensemble Online Adaptation (oa) module. Unlike most existing contrastive learning frameworks that operate at the sample level, MGSCL leverages multi-granular information, operating not only at the sample level but also at the group level. The oa module enables the model to adapt to new patient data while ensuring time consistency in sleep posture predictions. Additionally, it quantifies model uncertainty to generate weighted predictions, further enhancing performance. Evaluated on a dataset of 100 patients collected at a clinical research center, MGSCLoa achieved an average accuracy of 91.67% and an average F1 score of 91.53% with only 40 seconds of labeled data per posture. In a Phase 2 evaluation with 11 participants over 13 nights in home settings, the framework reached an average accuracy of 85.37% and a weighted F1 score of 83.59% using just 3 minutes of labeled data per common posture for each participant. These results underscore the potential of seismic sensor-based in-bed posture classification for assessing sleep quality and related health conditions. 
    more » « less
  4. Many people listen to music for hours every day, often near bedtime. We investigated whether music listening affects sleep, focusing on a rarely explored mechanism: involuntary musical imagery (earworms). In Study 1 ( N = 199, mean age = 35.9 years), individuals who frequently listen to music reported persistent nighttime earworms, which were associated with worse sleep quality. In Study 2 ( N = 50, mean age = 21.2 years), we randomly assigned each participant to listen to lyrical or instrumental-only versions of popular songs before bed in a laboratory, discovering that instrumental music increased the incidence of nighttime earworms and worsened polysomnography-measured sleep quality. In both studies, earworms were experienced during awakenings, suggesting that the sleeping brain continues to process musical melodies. Study 3 substantiated this possibility by showing a significant increase in frontal slow oscillation activity, a marker of sleep-dependent memory consolidation. Thus, some types of music can disrupt nighttime sleep by inducing long-lasting earworms that are perpetuated by spontaneous memory-reactivation processes. 
    more » « less
  5. Continuous monitoring of respiration provides invaluable insights about health status management (e.g., the progression or recovery of diseases). Recent advancements in radio frequency (RF) technologies show promise for continuous respiration monitoring by virtue of their non-invasive nature, and preferred over wearable solutions that require frequent charging and continuous wearing. However, RF signals are susceptible to large body movements, which are inevitable in real life, challenging the robustness of respiration monitoring. While many existing methods have been proposed to achieve robust RF-based respiration monitoring, their reliance on supervised data limits their potential for broad applicability. In this context, we propose, RF-Q, an unsupervised/self-supervised model to achieve signal quality assessment and quality-aware estimation for robust RF-based respiration monitoring. RF-Q uses the recon- struction error of an autoencoder (AE) neural network to quantify the quality of respiratory information in RF signals without the need for data labeling. With the combination of the quantified sig- nal quality and reconstructed signal in a weighted fusion, we are able to achieve improved robustness of RF respiration monitor- ing. We demonstrate that, instead of applying sophisticated models devised with respective expertise using a considerable amount of labeled data, by just quantifying the signal quality in an unsupervised manner we can significantly boost the average end-to-end (e2e) respiratory rate estimation accuracy of a baseline by an improvement ratio of 2.75, higher than the gain of 1.94 achieved by a supervised baseline method that excludes distorted data. 
    more » « less