skip to main content


Title: On the conduction mechanism in compositionally graded AlGaN

A two-band transport model is proposed to explain electrical conduction in graded aluminum gallium nitride layers, where the free hole conduction in the valence band is favored at high temperatures and hopping conduction in the impurity band dominates at low temperatures. The model simultaneously explains the significantly lowered activation energy for p-type conduction (∼10 meV), a nearly constant sheet conductivity at lower temperatures (200–330 K), and the anomalous reversal of the Hall coefficient caused by the negative sign of the Hall scattering factor in the hopping conduction process. A comparison between the uniform and graded samples suggests that compositional grading significantly enhances the probability of phonon-assisted hopping transitions between the Mg atoms.

 
more » « less
Award ID(s):
1916800 1653383 1508854
NSF-PAR ID:
10439904
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
7
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We stabilize resistance of melt-quenched amorphous Ge2Sb2Te5 (a-GST) phase change memory (PCM) line cells by substantially accelerating resistance drift and bringing it to a stop within a few minutes with application of high electric field stresses. The acceleration of drift is clearly observable at electric fields > 26 MV/m at all temperatures (85 K - 300 K) and is independent of the current forced through the device, which is a strong function of temperature. The low-field (< 21 MV/m) I-V characteristics of the stabilized cells measured in 85 K - 300 K range fit well to a 2D thermally-activated hopping transport model, yielding hopping distances in the direction of the field and activation energies ranging from 2 nm and 0.2 eV at 85 K to 6 nm and 0.4 eV at 300 K. Hopping transport appears to be better aligned with the field direction at higher temperatures. The high-field current response to voltage is significantly stronger and displays a distinctly different characteristic: the differential resistances at different temperatures extrapolate to a single point (8.9x10-8 this http URL), comparable to the resistivity of copper at 60 K, at 65.6 +/- 0.4 MV/m. The physical mechanisms that give rise to the substantial increase in current in the high-field regime also accelerate resistance drift. We constructed field and temperature dependent conduction models based on the experimental results and integrated it with our electro-thermal finite element device simulation framework to analyze reset, set and read operations of PCM devices. 
    more » « less
  2. Electron effective mass is a fundamental material parameter defining the free charge carrier transport properties, but it is very challenging to be experimentally determined at high temperatures relevant to device operation. In this work, we obtain the electron effective mass parameters in a Si-doped GaN bulk substrate and epitaxial layers from terahertz (THz) and mid-infrared (MIR) optical Hall effect (OHE) measurements in the temperature range of 38–340 K. The OHE data are analyzed using the well-accepted Drude model to account for the free charge carrier contributions. A strong temperature dependence of the electron effective mass parameter in both bulk and epitaxial GaN with values ranging from (0.18 ± 0.02) m0 to (0.34 ± 0.01) m0 at a low temperature (38 K) and room temperature, respectively, is obtained from the THz OHE analysis. The observed effective mass enhancement with temperature is evaluated and discussed in view of conduction band nonparabolicity, polaron effect, strain, and deviations from the classical Drude behavior. On the other hand, the electron effective mass parameter determined by MIR OHE is found to be temperature independent with a value of (0.200 ± 0.002) m0. A possible explanation for the different findings from THz OHE and MIR OHE is proposed.

     
    more » « less
  3. High p-conductivity (0.7 Ω−1 cm−1) was achieved in high-Al content AlGaN via Mg doping and compositional grading. A clear transition between the valence band and impurity band conduction mechanisms was observed. The transition temperature depended strongly on the compositional gradient and to some degree on the Mg doping level. A model is proposed to explain the role of the polarization field in enhancing the conductivity in Mg-doped graded AlGaN films and the transition between the two conduction types. This study offers a viable path to technologically useful p-conductivity in AlGaN.

     
    more » « less
  4. Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al0.7Ga0.3N and Al0.8Ga0.2N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 1019 cm−3), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN.

     
    more » « less
  5. Abstract

    While progress has been made in the design of organic semiconductors (OSCs) with improved transport properties, the understanding of the mechanisms involved is still limited, hindering further development. In this study, the interplay between structural order and transport considering one single OSC, analogous to past research on silicon is investigated. Rubrene (C42H28) is selected as it spans transport mechanisms from thermally activated hopping in its amorphous form to band‐like in highly ordered crystals in the orthorhombic polymorph. Transport characterizations including variable temperature conductivity, advanced Hall effect, and magnetoresistance measurements are performed on rubrene films with varying levels of order (polycrystalline vs amorphous), crystal phase (orthorhombic vs triclinic), and morphologies (platelet‐like vs spherulitic grains). A conductivity tuning range over four orders of magnitude between polycrystalline (platelet‐like) orthorhombic and amorphous films is reported. As observed in silicon, transport in polycrystalline orthorhombic rubrene is limited by energy barriers at grain boundaries. Additionally, a gradual transition from predominantly band‐like to predominantly hopping transport with increasing disorder, reminiscent of observations in silicon is shown. Nevertheless, OSCs differ from covalently bonded silicon by their weak intermolecular interaction. This study highlights that molecular packing must be optimized in OSCs to favor advantageous π‐orbital overlap and optimized transport properties.

     
    more » « less