skip to main content


This content will become publicly available on June 26, 2024

Title: Transdisciplinarity 101: Short-Term Training in Knowledge CoProduction to Face Global Environmental Change
The Belmont Forum and the Inter-American Institute for Global Change Research (IAI) organized an online training workshop on transdisciplinary (TD) approaches at the Sustainability, Research, and Innovation Congress (SRI) in 2022. The IAI is an intergovernmental organization that brings together 19 countries from the Americas to support adaptation to the world’s changing environment. The Belmont Forum is a consortium of major funders and international science councils to promote knowledge about sustainability science. The workshop aimed to create a safe environment for participants to share their impressions of and experiences about transdisciplinary research, using the Americas (IAI mandate) as a launching point for TD approaches globally. The workshop consisted of two online sessions: Transdisciplinary Approach 101 and Transdisciplinary Case Studies. The objectives of the current workshop report are: 1) to identify the key takeaways regarding common challenges and opportunities for transdisciplinary practice among workshop participants’ experiences, upon which to base recommendations for best practices, e.g., managing power imbalances, conflicting priorities and timeframes, enhancing communication and consolidating contextual awareness. 2) to offer insights to build better strategies for “train the trainers'' processes around transdisciplinarity, especially in congresses and short-term events, including using an experience-based approach, offering specific tools and increasing the participation of non-academic partners. This report encourages the implementation of other training processes by experienced transdisciplinary researchers, practitioners, and funders, in order to build capacities for collaborative approaches in diverse scientific communities.  more » « less
Award ID(s):
2025226
NSF-PAR ID:
10440076
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Science Policy & Governance
Volume:
22
Issue:
02
ISSN:
2372-2193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On August 9-10, 2023, the Thomas J. O’Keefe Institute for Sustainable Supply of Strategic Minerals at Missouri University of Science and Technology (Missouri S&T) hosted the third annual workshop on ‘Resilient Supply of Critical Minerals’. The workshop was funded by the National Science Foundation (NSF) and was attended by 218 participants. 128 participants attended in-person in the Havener Center on the Missouri S&T campus in Rolla, Missouri, USA. Another 90 participants attended online via Zoom. Fourteen participants (including nine students) received travel support through the NSF grant to attend the conference in Rolla. Additionally, the online participation fee was waived for another six students and early career researchers to attend the workshop virtually. Out of the 218 participants, 190 stated their sectors of employment during registration showing that 87 participants were from academia (32 students), 62 from the private sector and 41 from government agencies. Four topical sessions were covered: A. The Critical Mineral Potential of the USA: Evaluation of existing, and exploration for new resources. B. Mineral Processing and Recycling: Maximizing critical mineral recovery from existing production streams. C. Critical Mineral Policies: Toward effective and responsible governance. D. Resource Sustainability: Ethical and environmentally sustainable supply of critical minerals. Each topical session was composed of two keynote lectures and complemented by oral and poster presentations by the workshop participants. Additionally, a panel discussion with panelists from academia, the private sector and government agencies was held that discussed ‘How to grow the American critical minerals workforce’. The 2023 workshop was followed by a post-workshop field trip to the lead-zinc mining operations of the Doe Run Company in southeast Missouri that was attended by 18 workshop participants from academia (n=10; including 4 students), the private sector (n=4), and government institutions (n=4). Discussions during the workshop led to the following suggestions to increase the domestic supply of critical minerals: (i) Research to better understand the geologic critical mineral potential of the USA, including primary reserves/resources, historic mine wastes, and mineral exploration potential. (ii) Development of novel extraction techniques targeted at the recovery of critical minerals as co-products from existing production streams, mine waste materials, and recyclables. (iii) Faster and more transparent permitting processes for mining and mineral processing operations. (iv) A more environmentally sustainable and ethical approach to mining and mineral processing. (v) Development of a highly skilled critical minerals workforce. This workshop report provides a detailed summary of the workshop discussions and describes a way forward for this workshop series for 2024 and beyond. 
    more » « less
  2. null (Ed.)
    Sustainability of the scientific enterprise requires being able to recruit, retain, and prepare ongoing generations of PhD-trained scientists ready to adapt with the evolving needs of the scientific workforce and society. This necessitates a broadened, trainee-centered view in doctoral and postdoctoral training—including a prominent focus on career planning, science across sectors, and development of professional skills. Although there is energy and movement to enhance graduate and postdoctoral training, actions remain disparate, leading to inefficiencies in implementation and lack of systemic change. In 2019, an emerging national initiative, Professional Development Hub (pd|hub), hosted a workshop to bring organizations and individuals together across stakeholder groups to discuss enhancing the development, dissemination, and widespread implementation of evidence-based practices for STEM graduate and postdoctoral education, with specific emphasis on career and professional development for PhD scientists. The fifty workshop participants represented nine key stakeholder groups: career development practitioners, scientific societies, disseminators, education researchers and evaluators, employers of PhD scientists, funders, professional associations, trainees, and university leaders and faculty. In addition, participants spanned different races, ethnicities, genders, disciplines, sectors, geographic locations, career stages, and levels of institutional resources. This report presents cross-cutting themes identified at the workshop, examples of stakeholder-specific perspectives, and recommended next steps. As part of the collective effort to develop a foundation for sustainable solutions, several actions were defined, including: incentivizing change at institutions and programs, curating and disseminating resources for evidence-based career and professional development educational practices, expanding evidence for effective training and mentoring, establishing expectations for STEM career and professional development, and improving communication across all stakeholders in STEM PhD education. Furthermore, the report describes national-level actions already moving forward via pd|hub in the months following the workshop. Building on a decade of reports and gatherings advocating for a shift in graduate and postdoctoral education, this workshop represented a key step and catalyst for change toward a more impactful future. 
    more » « less
  3. Sustainability, including environmental and social sustainability, has been identified across all sectors, from government to industry to academia, as a critical area for action. Sustainability goals and actions, by necessity, require input from many fields, but engineers play a potentially outsized role due to the structures and products they build, and the associated choices they make. The Engineering for One Planet (EOP) initiative aims to address this challenge by ensuring all future engineers, no matter their discipline, are equipped with the skills, knowledge, understanding, and mindsets to design, build, and create in sustainable ways. Much has been achieved to date by the EOP initiative, through a process of multi-stakeholder engagement, in both understanding and piloting solutions to realize the EOP vision. However, in order to achieve the far reaching systemic changes desired, a roadmap for a Collective Impact-informed, cross-sector, collaborative initiative was developed. This roadmap leverages the approaches yielded from the recent National Science Foundation (NSF)-funded EOP Scaling for Impact Workshop, the lessons learned and results achieved from the initiative to date, and key considerations drawn from a Collective Impact approach that centers equity. This roadmap calls for stakeholders—including academia, industry, accrediting and professional organizations, community organizations, non-profits, funders, and those communities most impacted by the negative impacts of environmental and social sustainability challenges— to move beyond singular programmatic interventions, and instead work to collaboratively understand and construct coordinated solutions, to integrating sustainability into engineering education and the engineering profession. The roadmap’s call to action invites collaborators to join this initiative and engage with the roadmap as a starting point for their work together; the roadmap provides immediate action steps, and invites collaborators to further shape the roadmap into a collective, achievable plan for systems change, that they, their institutions/organizations, and other cross-sector collaborators can embrace. For systems change is never complete and the solutions not finite; it is only through ongoing, collective action that we can fully understand, and learn how to address the lack of sustainability in engineering as the complex, social problem it is. 
    more » « less
  4. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  5. null (Ed.)
    COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unit from an engineering curriculum. Our work explores how engineering concepts and practices are socially constructed through interactions with teachers, students, and artifacts. This approach, called interactional ethnography has been used by the authors and others to learn about engineering teaching and learning in precollege classrooms. The approach relies on collecting data during instruction, such as video and audio recordings, interviews, and artifacts such as journal entries and photos of physical designs. Findings are triangulated by analyzing these data sources. This methodology was going to be applied in an in-person engineering education workshop for rural elementary teachers, however the pandemic forced us to conduct the workshops remotely. Teachers, working in pairs, were sent workshop supplies, and worked together during the training series that took place over Zoom over four days for four hours each session. The paper describes how we collected video and audio of teachers and the facilitators both in whole group and in breakout rooms. Class materials and submissions of photos and evaluations were managed using Google Classroom. Teachers took photos of their work and scanned written materials and submitted them all by email. Slide decks were shared by the users and their group responses were collected in real time. Workshop evaluations were collected after each meeting using Google Forms. Evaluation data suggest that the teachers were engaged by the experience, learned significantly about engineering concepts and the knowledge-producing practices of engineers, and feel confident about applying engineering activities in their classrooms. This methodology should be of interest to the membership for three distinct reasons. First, remote instruction is a reality in the near-term but will likely persist in some form. Although many of us prefer to teach in person, remote learning allows us to reach many more participants, including those living in remote and rural areas who cannot easily attend in-person sessions with engineering educators, so it benefits the field to learn how to teach effectively in this way. Second, it describes an emerging approach to engineering education research. Interactional ethnography has been applied in precollege classrooms, but this paper demonstrates how it can also be used in teacher professional development contexts. Third, based on our application of interactional ethnography to an education setting, readers will learn specifically about how to use online collaborative software and how to collect and organize data sources for research purposes. 
    more » « less