Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ani Hsieh (Ed.)Reconfigurable modular robots can dynamically assemble/disassemble to accomplish the desired task better. Magnetic modular cubes are scalable modular subunits with embedded permanent magnets in a 3D-printed cubic body and can be wirelessly controlled by an external, uniform, timevarying magnetic field. This paper considers the problem of self-assembling these modules into desired 2D polyomino shapes using such magnetic fields. Although the applied magnetic field is the same for each magnetic modular cube, we use collisions with workspace boundaries to rearrange the cubes. We present a closed-loop control method for self-assembling the magnetic modular cubes into polyomino shapes, using computer vision-based feedback with re-planning. Experimental results demonstrate that the proposed closed-loop control improves the success rate of forming 2D user-specified polyominoes compared to an open-loop baseline. We also demonstrate the validity of the approach over changes in length scales, testing with both 10mm edge length cubes and 2.8mm edge length cubes.more » « less
-
Scores of papers show, given some robots, how to improve the useful work they perform. Continuing this line, we consider the efficiency of robot experiments by examining the feasibility of conducting several experiments simultaneously, interleaving execution and sharing resources between them. This paper lays theoretical groundwork for that concept and demonstrates its feasibility and utility.more » « less
-
null (Ed.)Scores of papers show, given some robots, how to improve the useful work they perform. Continuing this line, we consider the efficiency of robot experiments by examining the feasibility of conducting several experiments simultaneously, interleaving execution and sharing resources between them. This paper lays theoretical groundwork for that concept and demonstrates its feasibility and utility.more » « less
-
Monitoring coral reef populations as part of environmental assessment is essential. Recently, many marine science researchers are employing low-cost and power efficient Autonomous Underwater Vehicles (AUV) to survey coral reefs. While the counting problem, in general, has rich literature, little work has focused on estimating the density of coral population using AUVs. This paper proposes a novel approach to identify, count, and estimate coral populations. A Convolutional Neural Network (CNN) is utilized to detect and identify the different corals, and a tracking mechanism provides a total count for each coral species per transect. Experimental results from an Aqua2 underwater robot and a stereo hand-held camera validated the proposed approach for different image qualities.more » « less
-
We consider the problem of coverage planning for a particular type of very simple mobile robot. The robot must be able to translate in a commanded direction (specified in a global reference frame), with bounded error on the motion direction, until reaching the environment boundary. The objective, for a given environment map, is to generate a sequence of motions that is guaranteed to cover as large a portion of that environment as possible, in spite of the severe limits on the robot's sensing and actuation abilities. We show how to model the knowledge available to this kind of robot about its own position within the environment, show how to compute the region whose coverage can be guaranteed for a given plan, and characterize regions whose coverage cannot be guaranteed by any plan. We also describe a heuristic algorithm that generates coverage plans for this robot, based on a search across a specially-constructed graph. Simulation results demonstrate the effectiveness of the approach.more » « less