skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forecasting COVID-19 Vaccination Rates using Social Media Data
The COVID-19 pandemic has had a profound impact on the global community, and vaccination has been recognized as a crucial intervention. To gain insight into public perceptions of COVID-19 vaccines, survey studies and the analysis of social media platforms have been conducted. However, existing methods lack consideration of individual vaccination intentions or status and the relationship between public perceptions and actual vaccine uptake. To address these limitations, this study proposes a text classification approach to identify tweets indicating a user’s intent or status on vaccination. A comparative analysis between the proportions of tweets from different categories and real-world vaccination data reveals notable alignment, suggesting that tweets may serve as a precursor to actual vaccination status. Further, regression analysis and time series forecasting were performed to explore the potential of tweet data, demonstrating the significance of incorporating tweet data in predicting future vaccination status. Finally, clustering was applied to the tweet sets with positive and negative labels to gain insights into underlying focuses of each stance.  more » « less
Award ID(s):
1917112 2133960
PAR ID:
10440505
Author(s) / Creator(s):
;
Date Published:
Journal Name:
WWW '23 Companion: Companion Proceedings of the ACM Web Conference 2023
Page Range / eLocation ID:
1020 to 1029
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust. 
    more » « less
  2. Objectives Substantial inequalities in access to healthcare are common in rural and marginalized populations in the Global South, and these inequalities can drive health disparities. Historical mistrust of healthcare institutions can further impact healthcare behaviors, including vaccination. Here, we apply the concept of medical mistrust, which has been widely applied to healthcare decisions in industrialized countries, across a rural–urban spectrum of communities in Namibia, and assess its utility in understanding vaccination decisions. Methods Otjiherero-speaking indigenous communities of Kunene, Namibia, were surveyed to assess medical mistrust. Participants also answered questions about COVID-19 vaccination status, vaccine safety, and interest in a hypothetical malaria vaccine. Bayesian multilevel models were used to compare medical mistrust across communities and its influence on vaccination and vaccine perceptions. Results The level of medical mistrust varied across contexts, with the highest level of mistrust in peri-urban communities. Medical mistrust predicted beliefs about vaccine safety and interest in the malaria vaccine, but not COVID-19 vaccine status, which was largely driven by access to the vaccine. For rural and peri-urban Himba, participants also expressed disinterest in the COVID-19 vaccine and worries about its safety. Conclusion Addressing global health disparities requires understanding how locally contextualized social and ecological experiences shape healthcare and vaccination decisions. Results of this study show fundamental differences in medical mistrust by community, which may be contributing to beliefs about vaccines. Understanding how medical mistrust varies across these contexts, and how it impacts perceptions about vaccination, can inform health communication and public policy in underserved communities. 
    more » « less
  3. Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplification risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk perception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimizing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% contained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  4. null (Ed.)
    Introduction Twitter represents a mainstream news source for the American public, offering a valuable vehicle for learning how citizens make sense of pandemic health threats like Covid-19. Masking as a risk mitigation measure became controversial in the US. The social amplifica- tion risk framework offers insight into how a risk event interacts with psychological, social, institutional, and cultural communication processes to shape Covid-19 risk perception. Methods Qualitative content analysis was conducted on 7,024 mask tweets reflecting 6,286 users between January 24 and July 7, 2020, to identify how citizens expressed Covid-19 risk per- ception over time. Descriptive statistics were computed for (a) proportion of tweets using hyperlinks, (b) mentions, (c) hashtags, (d) questions, and (e) location. Results Six themes emerged regarding how mask tweets amplified and attenuated Covid-19 risk: (a) severity perceptions (18.0%) steadily increased across 5 months; (b) mask effectiveness debates (10.7%) persisted; (c) who is at risk (26.4%) peaked in April and May 2020; (d) mask guidelines (15.6%) peaked April 3, 2020, with federal guidelines; (e) political legitimiz- ing of Covid-19 risk (18.3%) steadily increased; and (f) mask behavior of others (31.6%) composed the largest discussion category and increased over time. Of tweets, 45% con- tained a hyperlink, 40% contained mentions, 33% contained hashtags, and 16.5% were expressed as a question. Conclusions Users ascribed many meanings to mask wearing in the social media information environ- ment revealing that COVID-19 risk was expressed in a more expanded range than objective risk. The simultaneous amplification and attenuation of COVID-19 risk perception on social media complicates public health messaging about mask wearing. 
    more » « less
  5. The COVID-19 pandemic has been sweeping across the United States of America since early 2020. The whole world was waiting for vaccination to end this pandemic. Since the approval of the first vaccine by the U.S. CDC on 9 November 2020, nearly 67.5% of the US population have been fully vaccinated by 10 July 2022. While quite successful in controlling the spreading of COVID-19, there were voices against vaccines. Therefore, this research utilizes geo-tweets and Bayesian-based method to investigate public opinions towards vaccines based on (1) the spatiotemporal changes in public engagement and public sentiment; (2) how the public engagement and sentiment react to different vaccine-related topics; (3) how various races behave differently. We connected the phenomenon observed to real-time and historical events. We found that in general the public is positive towards COVID-19 vaccines. Public sentiment positivity went up as more people were vaccinated. Public sentiment on specific topics varied in different periods. African Americans’ sentiment toward vaccines was relatively lower than other races. 
    more » « less