skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanically tunable elastic modulus of freestanding Ba1− x Sr x TiO3 membranes via phase-field simulation
The freestanding ferroelectric membranes with super-elasticity show promising applications in flexible electronic devices such as transducers, memories, etc. While there have been recent studies on the effect of mechanical bending on the domain structure evolutions and phase transitions in ferroelectric membranes, its influence on Young's modulus of these freestanding membranes is less explored, which is crucial for the design and application of flexible electronics. Here, a phase-field model is developed to simulate the tunability of Young's modulus of freestanding Ba1−xSrxTiO3 membranes under mechanical bending. It is demonstrated that the bended membrane shows a uniform Young's modulus compared with unbended membrane. By increasing the bending angle, Young's modulus tunability is enhanced, which can be attributed to the vortex-like domain structures induced by the mechanical bending. These vortex-like domains with large domain wall energy inhibit the subsequent domain switching under externally applied tensile strain and reduce the eigenstrain variation, which leads to a large Young's modulus. In addition, the formation of vortex domain structure is suppressed with increasing Sr2+ content in Ba1−xSrxTiO3 membranes at the same bending degree, resulting in a decrease in Young's modulus tunability. Our work reveals that the tunability of Young's modulus of freestanding ferroelectric membranes can be achieved by mechanical bending, which provides guidance for designing flexible electronic devices.  more » « less
Award ID(s):
2132105
PAR ID:
10441038
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
15
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strain engineering in perovskite oxides provides for dramatic control over material structure, phase, and properties, but is restricted by the discrete strain states produced by available high‐quality substrates. Here, using the ferroelectric BaTiO3, production of precisely strain‐engineered, substrate‐released nanoscale membranes is demonstrated via an epitaxial lift‐off process that allows the high crystalline quality of films grown on substrates to be replicated. In turn, fine structural tuning is achieved using interlayer stress in symmetric trilayer oxide‐metal/ferroelectric/oxide‐metal structures fabricated from the released membranes. In devices integrated on silicon, the interlayer stress provides deterministic control of ordering temperature (from 75 to 425 °C) and releasing the substrate clamping is shown to dramatically impact ferroelectric switching and domain dynamics (including reducing coercive fields to <10 kV cm−1and improving switching times to <5 ns for a 20 µm diameter capacitor in a 100‐nm‐thick film). In devices integrated on flexible polymers, enhanced room‐temperature dielectric permittivity with large mechanical tunability (a 90% change upon ±0.1% strain application) is demonstrated. This approach paves the way toward the fabrication of ultrafast CMOS‐compatible ferroelectric memories and ultrasensitive flexible nanosensor devices, and it may also be leveraged for the stabilization of novel phases and functionalities not achievable via direct epitaxial growth. 
    more » « less
  2. Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching. 
    more » « less
  3. Controlling the Dirac point voltage of graphene is essential for realizing various practical applications of graphene. Here, control of the doping state is achieved in flexible graphene field effect transistors (GFETs) by applying mechanical bending stress. By gradually increasing the bending strain (the decrease of upward/downward bending radius), the Dirac point ( V Dirac ) linearly shifts to left/right, which is induced by the flexoelectric effect of the ferroelectric Pb 0.92 La 0.08 Zr 0.52 Ti 0.48 O 3 (PLZT) gate. In addition, a superior mechanical antifatigue character is obtained in the flexible GFETs, and the doping effect is recoverable. The sensitivity to strain and high bending stability not only offer an easy, controllable and nonintrusive method to obtain a specific doping level in graphene for flexible electric devices, but also highlight the enormous potential of the flexible ferroelectric PLZT-gated GFETs as wearable sensors. 
    more » « less
  4. Abstract Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices. 
    more » « less
  5. A widely used method to measure the bending rigidity of bilayer membranes is fluctuation spectroscopy, which analyses the thermally-driven membrane undulations of giant unilamellar vesicles recorded with either phase-contrast or confocal microscopy. Here, we analyze the fluctuations of the same vesicle using both techniques and obtain consistent values for the bending modulus. We discuss the factors that may lead to discrepancies. 
    more » « less