skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing and analyzing an explicit unconditionally stable finite element scheme for an equivalent Bérenger’s PML model
The original Bérenger’s perfectly matched layer (PML) was quite effective in simulating wave propagation problem in unbounded domains. But its stability is very challenging to prove. Later, some equivalent PML models were developed by Bécache and Joly [ ESAIM: M2AN 36 (2002) 87–119] and their stabilities were established. Hence studying and developing efficicent numerical methods for solving those equivalent PML models are needed and interesting. Here we propose a novel explicit unconditionally stable finite element scheme to solve an equivalent Bérenger’s PML model. Both the stability and convergence analysis are proved for the proposed scheme. Numerical results justifying the theoretical analysis are presented. We also demonstrate the effectiveness of this PML in simulating wave propagation in the free space. To our best knowledge, this is the first explicit unconditionally stable finite element scheme developed for this PML model.  more » « less
Award ID(s):
2011943
PAR ID:
10441607
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
57
Issue:
2
ISSN:
2822-7840
Page Range / eLocation ID:
621 to 644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented. 
    more » « less
  2. We present a C^0 interior penalty finite element method for the sixth-order modified phase field crystal equation. We demonstrate that the numerical scheme is uniquely solvable, unconditionally energy stable, and convergent. Additionally, the error analysis presented develops a detailed methodology for analyzing time dependent problems utilizing the Cinterior penalty method. We furthermore support the theory with several numerical experiments. 
    more » « less
  3. We present a convergence analysis of an unconditionally energy-stable first-order semi-discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier–Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace the bulk potential energy and it isa prioriunclear whether the reformulated system is equivalent to the Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the reformulated and original systems in the weak sense. 
    more » « less
  4. Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods. 
    more » « less
  5. In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time- dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation. 
    more » « less