skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the convergence of an IEQ-based first-order semi-discrete scheme for the Beris-Edwards system
We present a convergence analysis of an unconditionally energy-stable first-order semi-discrete numerical scheme designed for a hydrodynamic Q-tensor model, the so-called Beris-Edwards system, based on the Invariant Energy Quadratization Method (IEQ). The model consists of the Navier–Stokes equations for the fluid flow, coupled to the Q-tensor gradient flow describing the liquid crystal molecule alignment. By using the Invariant Energy Quadratization Method, we obtain a linearly implicit scheme, accelerating the computational speed. However, this introduces an auxiliary variable to replace the bulk potential energy and it isa prioriunclear whether the reformulated system is equivalent to the Beris-Edward system. In this work, we prove stability properties of the scheme and show its convergence to a weak solution of the coupled liquid crystal system. We also demonstrate the equivalence of the reformulated and original systems in the weak sense.  more » « less
Award ID(s):
1912854
PAR ID:
10483380
Author(s) / Creator(s):
;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
57
Issue:
6
ISSN:
2822-7840
Page Range / eLocation ID:
3275 to 3302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen–Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solutions is based on the convergence of Ginzburg–Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and then the Skorokhod compactness theorem, which is built upon uniform energy estimates. 
    more » « less
  2. We consider numerical approximations for a phase-field dendritic crystal growth model, which is a highly nonlinear system that couples the anisotropic Allen–Cahn type equation and the heat equation. By combining the stabilized-Invariant Energy Quadratization method with a novel decoupling technique, the scheme requires solving only a sequence of linear elliptic equations at each time step, making it the first, to the best of the author’s knowledge, totally decoupled, linear, unconditionally energy stable scheme for the model. We further prove the unconditional energy stability rigorously and present various numerical simulations to demonstrate the stability and accuracy. 
    more » « less
  3. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented. 
    more » « less
  4. In this paper, we consider the numerical approximations for a hydrodynamical model of smectic-A liquid crystals. The model, derived from the variational approach of the modified Oseen– Frank energy, is a highly nonlinear system that couples the incompressible Navier–Stokes equations and a constitutive equation for the layer variable. We develop two linear, second order time marching schemes based on the Invariant Energy Quadratization method for nonlinear terms in the constitutive equation, the projection method for the Navier–Stokes equations, and some subtle implicit-explicit treatments for the convective and stress terms. Moreover, we prove the well-posedness of the linear system and their unconditionally energy stabilities rigorously. Various numerical experiments are presented to demonstrate the stability and the accuracy of the numerical schemes in simulating the dynamics under shear flow and the magnetic field. 
    more » « less
  5. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $$Q$$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less