skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic transfer learning with progressive meta-task scheduler
Dynamic transfer learning refers to the knowledge transfer from a static source task with adequate label information to a dynamic target task with little or no label information. However, most existing theoretical studies and practical algorithms of dynamic transfer learning assume that the target task is continuously evolving over time. This strong assumption is often violated in real world applications, e.g., the target distribution is suddenly changing at some time stamp. To solve this problem, in this paper, we propose a novel meta-learning framework L2S based on a progressive meta-task scheduler for dynamic transfer learning. The crucial idea of L2S is to incrementally learn to schedule the meta-pairs of tasks and then learn the optimal model initialization from those meta-pairs of tasks for fast adaptation to the newest target task. The effectiveness of our L2S framework is verified both theoretically and empirically.  more » « less
Award ID(s):
2117902
PAR ID:
10441824
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
5
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Prevailing methods for graphs require abundant label and edge information for learning. When data for a new task are scarce, meta-learning can learn from prior experiences and form much-needed inductive biases for fast adaption to new tasks. Here, we introduce G-Meta, a novel meta-learning algorithm for graphs. G-Meta uses local subgraphs to transfer subgraph-specific information and learn transferable knowledge faster via meta gradients. G-Meta learns how to quickly adapt to a new task using only a handful of nodes or edges in the new task and does so by learning from data points in other graphs or related, albeit disjoint label sets. G-Meta is theoretically justified as we show that the evidence for a prediction can be found in the local subgraph surrounding the target node or edge. Experiments on seven datasets and nine baseline methods show that G-Meta outperforms existing methods by up to 16.3%. Unlike previous methods, G-Meta successfully learns in challenging, few-shot learning settings that require generalization to completely new graphs and never-before-seen labels. Finally, G-Meta scales to large graphs, which we demonstrate on a new Tree-of-Life dataset comprising of 1,840 graphs, a two-orders of magnitude increase in the number of graphs used in prior work. 
    more » « less
  2. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less
  3. Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines. 
    more » « less
  4. Meta-learning methods typically learn tasks under the assumption that all tasks are equally important. However, this assumption is often not valid. In real-world applications, tasks can vary both in their importance during different train- ing stages and in whether they contain noisy labeled data or not, making a uniform approach suboptimal. To address these issues, we propose the Data-Efficient and Robust Task Selection (DERTS) algorithm, which can be incorporated into both gradient and metric-based meta-learning algo- rithms. DERTS selects weighted subsets of tasks from task pools by minimizing the approximation error of the full gra- dient of task pools in the meta-training stage. The selected tasks are efficient for rapid training and robust towards noisy label scenarios. Unlike existing algorithms, DERTS does not require any architecture modification for training and can handle noisy label data in both the support and query sets. Analysis of DERTS shows that the algorithm follows similar training dynamics as learning on the full task pools. Experiments show that DERTS outperforms existing sam- pling strategies for meta-learning on both gradient-based and metric-based meta-learning algorithms in limited data budget and noisy task settings. 
    more » « less
  5. Abstract Transfer learning refers to the process of adapting a model trained on a source task to a target task. While kernel methods are conceptually and computationally simple models that are competitive on a variety of tasks, it has been unclear how to develop scalable kernel-based transfer learning methods across general source and target tasks with possibly differing label dimensions. In this work, we propose a transfer learning framework for kernel methods by projecting and translating the source model to the target task. We demonstrate the effectiveness of our framework in applications to image classification and virtual drug screening. For both applications, we identify simple scaling laws that characterize the performance of transfer-learned kernels as a function of the number of target examples. We explain this phenomenon in a simplified linear setting, where we are able to derive the exact scaling laws. 
    more » « less