skip to main content


Title: Degradation and Mechanical Behavior of Fish Gelatin/Polycaprolactone AC Electrospun Nanofibrous Meshes
Abstract

With the increasing interest in biopolymer nanofibers for diverse applications, the characterization of these materials in the physiological environment has become of equal interest and importance. This study performs first‐time simulated body fluid (SBF) degradation and tensile mechanical analyses of blended fish gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes prepared by a high‐throughput free‐surface alternating field electrospinning. The thermally crosslinked FGEL/PCL nanofibrous materials with 84–96% porosity and up to 60 wt% PCL fraction demonstrate mass retention up to 88.4% after 14 days in SBF. The trends in the PCL crystallinity and FGEL secondary structure modification during the SBF degradation are analyzed by Fourier transform infrared spectroscopy. Tensile tests of such porous, 0.1–2.2 mm thick FGEL/PCL nanofibrous meshes in SBF reveal the ultimate tensile strength, Young's modulus, and elongation at break within the ranges of 60–105 kPa, 0.3–1.6 MPa, and 20–70%, respectively, depending on the FGEL/PCL mass ratio. The results demonstrate that FGEL/PCL nanofibrous materials prepared from poorly miscible FGEL and PCL can be suitable for selected biomedical applications such as scaffolds for skin, cranial cruciate ligament, articular cartilage, or vascular tissue repair.

 
more » « less
Award ID(s):
1852207
NSF-PAR ID:
10441876
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Materials and Engineering
Volume:
308
Issue:
10
ISSN:
1438-7492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanofibers made by blending natural and synthetic biopolymers have shown promise for better mechanical stability, ECM morphology mimicry, and cellular interaction of such materials. With the evolution of production methods of nanofibers, alternating field electrospinning (a.k.a. alternating current (AC) electrospinning) demonstrates a strong potential for scalable and sustainable fabrication of nanofibrous materials. This study focuses on AC‐electrospinning of poorly miscible blends of gelatin from cold water fish skin (FGEL) and polycaprolactone (PCL) in a range of FGEL/PCL mass ratios from 0.9:0.1 to 0.4:0.6 in acetic acid single‐solvent system. The nanofiber productivity rates of 7.8–19.0 g/h were obtained using a single 25 mm diameter dish‐like spinneret, depending on the precursor composition. The resulting nanofibrous meshes had 94%–96% porosity and revealed the nanofibers with 200–750 nm diameters and smooth surface morphology. The results of FTIR, XRD, and water contact angle analyses have shown the effect of FGEL/PCL mass ratio on the changes in the material wettability, PCL crystallinity and orientation of PCL crystalline regions, and secondary structure of FGEL in as‐spun and thermally crosslinked materials. Preliminary in vitro tests with 3 T3 mouse fibroblasts confirmed favorable and tunable cell attachment, proliferation, and spreading on all tested FGEL/PCL nanofibrous meshes.

     
    more » « less
  2. Blended nanofibrous biomaterials from natural and synthetic sources show promise for better biointegration. This study explores high-yield alternating field electrospinning (AFES) of blended cold-water fish skin gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes with up to 30 wt% PCL at 7.8–14.4 g/h fiber productivity, depending on the composition. FGEL/PCL nanofibers reveal smooth surface morphology and 237–313 nm average diameters after thermal crosslinking. FTIR analysis indicated little FGEL/PCL interaction and notable changes in PCL crystallinity in the crosslinked nanofibers. A 14-days in-vitro analysis shows good cellular viability and nanofibrous FGEL/PCL mesh stability. Results demonstrate that AFES provides efficient, scalable production of blended FGEL/PCL nanofibrous biomaterials with suitable characteristics. 
    more » « less
  3. Electrospun fibrous scaffolds made from polymers such as polycaprolactone (PCL) have been used in drug delivery and tissue engineering for their viscoelasticity, biocompatibility, biodegradability, and tunability. Hydrophobicity and the prolonged degradation of PCL causes inhibition of the natural tissue-remodeling processes. Poliglecaprone (PGC), which consists of PCL and Poly (glycolic acid) (PGA), has better mechanical properties and a shorter degradation time compared to PCL. A blend between PCL and PGC called PPG can give enhanced shared properties for biomedical applications. In this study, we fabricated a blend of PCL and PGC nanofibrous scaffold (PPG) at different ratios of PGC utilizing electrospinning. We studied the physicochemical and biological properties, such as morphology, crystallinity, surface wettability, degradation, surface functionalization, and cellular compatibility. All PPG scaffolds exhibited good uniformity in fiber morphology and improved mechanical properties. The surface wettability and degradation studies confirmed that increasing PGC in the PPG composites increased hydrophilicity and scaffold degradation respectively. Cell viability and cytotoxicity results showed that the scaffold with PGC was more viable and less toxic than the PCL-only scaffolds. PPG fibers were successfully coated with polydopamine (PDA) and collagen to improve degradation, biocompatibility, and bioactivity. The nanofibrous scaffolds synthesized in this study can be utilized for tissue engineering applications such as for regeneration of human articular cartilage regeneration and soft bones.

     
    more » « less
  4. Abstract

    Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio‐inspired composite material development has been quite challenged. In this research, we introduced new bio‐inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ‐caprolactone) (PCL), a synthetic hydrophobic‐biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin‐coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood–brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM‐like properties that mimic synthetic‐bio‐interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.

     
    more » « less
  5. Fused filament fabrication (FFF) of composites with compliant high-strength fibers could expand opportunities for the design and fabrication of complex flexible structures, but this topic has received limited attention. This study pursued the development of filaments consisting of ultra-high molecular weight polyethylene yarn (UHMWPE) embedded in a matrix of polycaprolactone (UPE/PCL) and successful 3D printing. The physical characteristics and printability of the filament were evaluated in terms of key parameters including spooling speed, temperature, fiber distribution (consolidated vs dispersed), and fiber volume fraction (4≤ Vf ≤30 %). An evaluation of the microstructure and tensile properties of the UPE/PCL was performed after processing and printing. Prior to printing, the filament exhibited an ultimate tensile strength (UTS) of 590±40 MPa with apparent fiber strength of 2.4 GPa. For the printed condition, the UTS reached 470±60 MPa and apparent fiber strength of 1.9 GPa. Fiber dispersion in the filament plays an important role on the printed properties and the potential for fiber degradation. Nevertheless, the strength of the UPE/PCL represents a new performance benchmark for compliant composites printed by FFF. This new material system can support applications where strength and toughness are key performance metrics in addition to flexibility. 
    more » « less