Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (
- NSF-PAR ID:
- 10442241
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biological Reviews
- Volume:
- 98
- Issue:
- 6
- ISSN:
- 1464-7931
- Format(s):
- Medium: X Size: p. 1862-1886
- Size(s):
- p. 1862-1886
- Sponsoring Org:
- National Science Foundation
More Like this
-
Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lack of information on settlement versus post-settlement events in determining recruitment and population size. Declines in coral abundance are often inferred to be associated with reduced densities of recruits, which could arise from mechanisms occurring at larval settlement, or throughout post-settlement stages. This study uses annual measurements from 2008 to 2021 of coral cover, the density of coral settlers (S), the density of small corals (SC), and environmental conditions, to evaluate the roles of settlement versus post-settlement events in determining rates of coral recruitment and changes in coral cover at Moorea, French Polynesia. Coral cover, S, SC, and the SC:S ratio (a proxy for post-settlement success), and environmental conditions, were used in generalized additive models (GAMs) to show that: (a) coral cover was more strongly related to SC and SC:S than S, and (b) SC:S was highest when preceded by cool seawater, low concentrations of Chlorophyll a, and low flow speeds, and S showed evidence of declining with elevated temperature. Together, these results suggest that changes in coral cover in Moorea are more strongly influenced by post-settlement events than settlement. The key to understanding coral community resilience may lie in elucidating the factors attenuating the bottleneck between settlers and small corals.more » « less
-
Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages.more » « less
-
Abstract The supply of propagules mediates recruitment and population dynamics, thereby driving community resilience following disturbances. These relationships are of interest on tropical reefs, where coral populations have drastically declined in abundance and sexual recruitment is the only means by which they will recover. To better understand the causes and implications of variation in this vital rate (i.e., recruitment), coral recruitment was measured in Mo'orea, French Polynesia, and St. John, U.S. Virgin Islands, using settlement tiles deployed from 2005 to 2019. The results were used to test two hypotheses: (1) annual variation in recruitment is a weak predictor of long‐term variation in recruitment, but (2) it is associated with seawater temperature. Coral recruitment varied over space and time, so that differences in recruitment between consecutive years were uninformative of long‐term trends. Recruitment varied among years in an apparently chaotic manner, but the variation reflected linear and quadratic associations with mean annual temperature and the daily variation in temperature. These associations are consistent with theory addressing the mechanisms by which temperature affects coral larvae and recruitment. Comprehension of these mechanisms is required to accurately interpret evidence of coral recruitment collapse, and to elucidate the conditions favoring recovery of coral communities through recruitment.
-
Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.
-
Coral reefs in Moorea, French Polynesia, suffered catastrophic coral mortality through predation by Acanthaster planci from 2006 to 2010, and Cyclone Oli in 2010, yet by 2015 some coral populations were approaching pre-disturbance sizes. Using long-term study plots, we quantified population dynamics of spawning Pocillopora spp. along the north shore of Moorea between 2010 and 2014, and considered evidence that population recovery could be supported by self-seeding. Results scaled up from study plots and settlement tiles suggest that the number of Pocillopora spp. colonies on the outer reef increased 1,890-fold between 2010 and 2014/2015, and in the back reef, 8-fold between 2010 and 2014/2015. Assuming that spawning Pocillopora spp. in Moorea release similar numbers of eggs as con-generics in Hawaii, and fertilization success is similar to other spawning corals, the capacity of Pocillopora spp. to produce larvae was estimated. These estimates suggest that Pocillopora spp. in Moorea produced a large excess of larvae in 2010 and 2014 relative to the number required to produce the recruits found in the back reef and outer reef in 2010 and 2014, even assuming that ∼99.9% of the larvae do not recruit in Moorea. Less than a third of the recruits in one year would have to survive to produce the juvenile Pocillopora spp. found in the back and outer reefs in 2010 and 2014/2015. Our first order approximations reveal the potential for Pocillopora spp. on the north shore of Moorea to produce enough larvae to support local recruitment and population recovery following a catastrophic disturbance.more » « less