skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coral recruitment: patterns and processes determining the dynamics of coral populations
ABSTRACT Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms ‘recruit’ and ‘recruitment’ have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis‐driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long‐term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.  more » « less
Award ID(s):
2019992 2224354
PAR ID:
10442241
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biological Reviews
Volume:
98
Issue:
6
ISSN:
1464-7931
Format(s):
Medium: X Size: p. 1862-1886
Size(s):
p. 1862-1886
Sponsoring Org:
National Science Foundation
More Like this
  1. Tropical corals are undergoing population declines due to disturbances. The implications of these trends are modulated by the ability of corals to support population recovery through recruitment. Current research underscores the importance of physical features of benthic surfaces in promoting coral recruitment, which creates opportunities to enhance recruitment by engineering surfaces to replicate these features with the goal of enhancing coral settlement. This study examined the interaction between the settlement of coral larvae and three-dimensional (3D) surfaces and employed 3D printing to enhance recruitment. We tested the effects of the features of microhabitats on the settlement preference, gregariousness, and survival of the brooding coral Pocillopora acuta. Grooved microhabitats that are common in the shallow (<7 m depth) backreef of Moorea, French Polynesia, were printed onto tiles made of polylactic acid, and were favored for settlement by freshly released larvae fromP.acuta. The percent survivorship over 20 d of coral recruits that settled in grooved microhabitats was 16.4% vs none on open flat surfaces. These results underscore the importance of naturally forming benthic features in promoting coral recruitment, and they highlight the potential for duplication of these features through 3D printing to enhance coral recruitment and accelerate reef restoration following damage. 
    more » « less
  2. Understanding population dynamics is a long-standing objective of ecology, but the need for progress in this area has become urgent. For coral reefs, achieving this objective is impeded by a lack of information on settlement versus post-settlement events in determining recruitment and population size. Declines in coral abundance are often inferred to be associated with reduced densities of recruits, which could arise from mechanisms occurring at larval settlement, or throughout post-settlement stages. This study uses annual measurements from 2008 to 2021 of coral cover, the density of coral settlers (S), the density of small corals (SC), and environmental conditions, to evaluate the roles of settlement versus post-settlement events in determining rates of coral recruitment and changes in coral cover at Moorea, French Polynesia. Coral cover, S, SC, and the SC:S ratio (a proxy for post-settlement success), and environmental conditions, were used in generalized additive models (GAMs) to show that: (a) coral cover was more strongly related to SC and SC:S than S, and (b) SC:S was highest when preceded by cool seawater, low concentrations of Chlorophyll a, and low flow speeds, and S showed evidence of declining with elevated temperature. Together, these results suggest that changes in coral cover in Moorea are more strongly influenced by post-settlement events than settlement. The key to understanding coral community resilience may lie in elucidating the factors attenuating the bottleneck between settlers and small corals. 
    more » « less
  3. This dataset contains measurements of Eastern oyster (Crassostrea virginica) recruitment to standardized ceramic tiles deployed across intertidal oyster reef sites in the Virginia Coast Reserve. Recruitment is defined as the number of macroscopic oyster recruits (less than or equal to 25 mm shell height) per square centimeter of tile surface, capturing settlement and early post-settlement survival. Data were collected in 2018, 2019, and 2021 across 9-16 reef sites per year, including both natural and restored reefs. The dataset supports research on spatial and environmental drivers of oyster recruitment and has been validated against natural reef substrate data for comparability. 
    more » « less
  4. Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages. 
    more » « less
  5. Abstract The supply of propagules mediates recruitment and population dynamics, thereby driving community resilience following disturbances. These relationships are of interest on tropical reefs, where coral populations have drastically declined in abundance and sexual recruitment is the only means by which they will recover. To better understand the causes and implications of variation in this vital rate (i.e., recruitment), coral recruitment was measured in Mo'orea, French Polynesia, and St. John, U.S. Virgin Islands, using settlement tiles deployed from 2005 to 2019. The results were used to test two hypotheses: (1) annual variation in recruitment is a weak predictor of long‐term variation in recruitment, but (2) it is associated with seawater temperature. Coral recruitment varied over space and time, so that differences in recruitment between consecutive years were uninformative of long‐term trends. Recruitment varied among years in an apparently chaotic manner, but the variation reflected linear and quadratic associations with mean annual temperature and the daily variation in temperature. These associations are consistent with theory addressing the mechanisms by which temperature affects coral larvae and recruitment. Comprehension of these mechanisms is required to accurately interpret evidence of coral recruitment collapse, and to elucidate the conditions favoring recovery of coral communities through recruitment. 
    more » « less