skip to main content


This content will become publicly available on January 1, 2024

Title: Single-Photon Emitters in Aluminum Nitride by Zr ion Implantation

We report on the generation of single-photon emitters in aluminum nitride films through Zr-ion implantation, which was predicted to form optically addressable spin defects. We studied implantation conditions, post-implantation procedures, and properties of resulting emitters.

 
more » « less
Award ID(s):
2015025
NSF-PAR ID:
10442336
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Single-Photon Emitters in Aluminum Nitride by Zr ion Implantation
Page Range / eLocation ID:
FTu3C.2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Color centers in hexagonal boron nitride (hBN) are presently attracting broad interest as a novel platform for nanoscale sensing and quantum information processing. Unfortunately, their atomic structures remain largely elusive and only a small percentage of the emitters studied thus far have the properties required to serve as optically addressable spin qubits. Here, we use confocal fluorescence microscopy at variable temperatures to study a new class of point defects produced via cerium ion implantation in thin hBN flakes. We find that, to a significant fraction, emitters show bright room-temperature emission, and good optical stability suggesting the formation of Ce-based point defects. Using density functional theory (DFT) we calculate the emission properties of candidate emitters, and single out the CeVBcenter—formed by an interlayer Ce atom adjacent to a boron vacancy—as one possible microscopic model. Our results suggest an intriguing route to defect engineering that simultaneously exploits the singular properties of rare-earth ions and the versatility of two-dimensional material hosts.

     
    more » « less
  2. Solid-state defect qubit systems with spin-photon interfaces show great promise for quantum information and metrology applications. Photon collection efficiency, however, presents a major challenge for defect qubits in high refractive index host materials. Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface including spectral response, photon polarization, and collection mode. Further, the design process can incorporate additional constraints, such as fabrication tolerance and material processing limitations. Here, we design and demonstrate a compact hybrid gallium phosphide on diamond inverse-design planar dielectric structure coupled to single near-surface nitrogen-vacancy centers formed by implantation and annealing. We observe up to a 14-fold broadband enhancement in photon extraction efficiency, in close agreement with simulations. We expect that such inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, efficient sensing, and heralded entanglement schemes.

     
    more » « less
  3. Short-pulse ion beams have been developed in recent years and now enable applications in materials science. A tunable flux of selected ions delivered in pulses of a few nanoseconds can affect the balance of defect formation and dynamic annealing in materials. We report results from color center formation in silicon with pulses of 900 keV protons. G-centers in silicon are near-infrared photon emitters with emerging applications as single-photon sources and for spin-photon qubit integration. G-centers consist of a pair of substitutional carbon atoms and one silicon interstitial atom and are often formed by carbon ion implantation and thermal annealing. Here, we report on G-center formation with proton pulses in silicon samples that already contained carbon, without carbon ion implantation or thermal annealing. The number of G-centers formed per proton increased when we increased the pulse intensity from 6.9 × 109 to 7.9 × 1010 protons/cm2/pulse, demonstrating a flux effect on G-center formation efficiency. We observe a G-center ensemble linewidth of 0.1 nm (full width half maximum), narrower than previously reported. Pulsed ion beams can extend the parameter range available for fundamental studies of radiation-induced defects and the formation of color centers for spin-photon qubit applications. 
    more » « less
  4. Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV−) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties, including narrow-linewidth emission and long spin coherence times. SnV− centers need to be incorporated in optical waveguides for efficient onchip routing of the photons they generate. However, such integration has yet to be realized. In this Letter, we demonstrate the coupling of SnV− centers to a nanophotonic waveguide. We realize this device by leveraging our recently developed shallow ion implantation and growth method for the generation of high-quality SnV− centers and the advanced quasi-isotropic diamond fabrication technique. We confirm the compatibility and robustness of these techniques through successful coupling of narrow-linewidth SnV− centers (as narrow as 36 ± 2 MHz) to the diamond waveguide. Furthermore, we investigate the stability of waveguide-coupled SnV− centers under resonant excitation. Our results are an important step toward SnV−-based on-chip spin-photon interfaces, single-photon nonlinearity, and photon-mediated spin interactions. 
    more » « less
  5. Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect density as determined by low-temperature time-resolved PL measurements. Additionally, the NW-PC structures enable the positioning of erbium (Er 3+ ) ions with an accuracy of 10 nm, an improvement on the current state-of-the-art ion implantation processes, and allow strong coupling of Er 3+ ions in NW-PC. The NW-PC structure is pivotal in engineering the Er 3+ -induced 1540-nm emission, which is the telecommunication wavelength used in optical fibers. An approximately 60-fold increase in the room-temperature Er 3+ PL emission is observed in NW-PC compared to its thin-film analog in the linear pumping regime. Furthermore, 22 times increase in the Er 3+ PL intensity per number of exited Er ions in NW-PC was observed at saturation while using 20 times lower pumping power. The NW-PC structures demonstrate broadband and efficient excitation characteristics for Er 3+ , with an absorption cross-section (~2 × 10 −18 cm 2 ) two-order larger than typical benchmark values for direct absorption in rare-earth-doped quantum materials. Experimental and simulation results show that the Er 3+ PL is photostable at high pumping power and polarized in NW-PC and is modulated with NW-PC lattice periodicity. The observed characteristics from these technologically friendly nanophotonic structures provide a promising route to the development of scalable nanophotonics and formation of single-photon emitters in the telecom optical wavelength band. 
    more » « less