Anthropogenic climate change is projected to drive increases in climate extremes and climate-sensitive ecosystem disturbances such as wildfire with enormous economic impacts. Understanding spatial and temporal patterns of risk to property values from climate-sensitive disturbances at national and regional scales and from multiple disturbances is urgently needed to inform risk management and policy efforts. Here, we combine models for three major climate-sensitive disturbances (i.e., wildfire, climate stress-driven tree mortality, and insect-driven tree mortality), future climate projections of these disturbances, and high-resolution property values data to quantify the spatiotemporal exposure of property values to disturbance across the contiguous United States (US). We find that property values exposed to these climate-sensitive disturbances increase sharply in future climate scenarios, particularly in existing high-risk regions of the western US, and that novel exposure risks emerge in some currently lower-risk regions such as the southeast and Great Lakes regions. Climate policy that drives emissions towards low-to-moderate climate futures avoids large increases in disturbance risk exposure compared to high emissions scenarios. Our results provide an important large-scale assessment of climate-sensitive disturbance risk to property values to help inform land management and climate adaptation efforts.
more » « less- NSF-PAR ID:
- 10442555
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 094011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland–urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM 2.5 (particulate matter with diameter <2.5 μm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change–induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change—but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy.more » « less
-
Abstract Climate change is altering disturbance regimes and recovery rates of forests globally. The future of these forests will depend on how climate change interacts with management activities. Forest managers are in critical need of strategies to manage the effects of climate change.
We co‐designed forest management scenarios with forest managers and stakeholders in the Klamath ecoregion of Oregon and California, a seasonally dry forest in the Western US subject to fire disturbances. The resultant scenarios span a broad range of forest and fire management strategies. Using a mechanistic forest landscape model, we simulated the scenarios as they interacted with forest growth, succession, wildfire disturbances and climate change. We analysed the simulations to (a) understand how scenarios affected the fire regime and (b) estimate how each scenario altered potential forest composition.
Within the simulation timeframe (85 years), the scenarios had a large influence on fire regimes, with fire rotation periods ranging from 60 years in a minimal management scenario to 180 years with an industrial forestry style management scenario. Regardless of management strategy, mega‐fires (>100,000 ha) are expected to increase in frequency, driven by stronger climate forcing and extreme fire weather.
High elevation conifers declined across all climate and management scenarios, reflecting an imbalance between forest types, climate and disturbance. At lower elevations (<1,800 m), most scenarios maintained forest cover levels; however, the minimal intervention scenario triggered 5 × 105 ha of mixed conifer loss by the end of the century in favour of shrublands, whereas the maximal intervention scenario added an equivalent amount of mixed conifer.
Policy implications . Forest management scenarios that expand beyond current policies—including privatization and aggressive climate adaptation—can strongly influence forest trajectories despite a climate‐enhanced fire regime. Forest management can alter forest trajectories by increasing the pace and scale of actions taken, such as fuel reduction treatments, or by limiting other actions, such as fire suppression. -
Forest disturbances, such as an eastern spruce budworm ( Choristoneura fumiferana ) outbreak, impact the strength and persistence of forest carbon sinks. Salvage harvests are a typical management response to widespread tree mortality, but the decision to salvage mortality has large implications for the fate of carbon stocks (including forest carbon and harvested wood products) in the near and long terms. In this study, we created decision-support models for salvage harvesting based on carbon after an eastern spruce budworm outbreak. We used lasso regression to determine which stand characteristics (e.g., basal area) are the best predictors of carbon 40 years after an outbreak in both salvage and no salvage scenarios. We modeled carbon at year 40 for different treatment scenarios and discount rates. Treatment scenarios represent residual stand conditions that may be present when an outbreak occurs. Economic discount rates were applied to 40-year carbon values to account for near and long-term carbon storage aspects. We found that the volume and size of eastern spruce budworm host species are significant predictors of salvage preference based on carbon. We found overall that salvaging less volume is recommended to avoid major swings in carbon budgets and that discounting carbon values to apply weight to near or long-term sequestration greatly affects whether salvaging is preferred. Lasso models are constructed for the northeastern US, however, similar concepts may be applied beyond our study area and potentially for other insect outbreaks similar to spruce budworm, such as mountain pine beetle ( Dendroctonus ponderosae ) or hemlock woolly adelgid ( Adelges tsugae ). From a policy standpoint widespread salvaging could create a large carbon emissions deficit with the risk of not being fully replenished within a desired timeframe. Since salvaging is often financially driven, especially for private landowners, carbon market payments or incentives for not salvaging is a consideration for future policy.more » « less
-
Abstract California must adapt to increasing wildfire activity concurrent with climate change and expanding housing development in fire-prone areas. Recent decades have seen record-breaking fire activity, economic costs, and human health impacts. Residents more frequently face home evacuations, prolonged periods of unhealthy air quality, and power shut-offs. Understanding how these experiences influence support for risk mitigation policies is essential to inform action on climate and fire adaptation. To better understand linkages between experience and policy support, we surveyed California residents (
n = 645) about their wildfire-related experiences, risk perceptions, and support for 18 wildfire risk mitigation policies. To assess how the relationship between policy support and wildfire experience is modulated by preexisting worldviews, we measured the extent to which respondents are motivated by individualistic or communitarian values as proposed in the cultural theory of risk. We surveyed residents across a gradient of wildfire impacts, spatially stratifying residences based on wildland-urban-interface type and proximity to large 2020 wildfires. Support was generally high for most policies, though most respondents opposed incorporating future risk into insurance rates and coverage. Policy support models showed that communitarian worldviews were more consistently associated with greater support for diverse wildfire mitigation policies than were measures of recent experience with wildfire. These results suggest that California residents within our sample regions already support many wildfire risk mitigation strategies, and preexisting societal beliefs are a stronger predictor of these views than personal experiences with wildfire. Policy-makers can utilize this understanding to focus on crafting policies and messaging that resonates with individualistic values. -
Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests.