skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chronic fracture and osteomyelitis in a large‐bodied ornithomimosaur with implications for the identification of unusual endosteal bone in the fossil record
Abstract Paleopathological diagnoses provide key information on the macroevolutionary origin of disease as well as behavioral and physiological inferences that are inaccessible via direct observation of extinct organisms. Here we describe the external gross morphology and internal architecture of a pathologic right second metatarsal (MMNS VP‐6332) of a large‐bodied ornithomimid (~432 kg) from the Santonian (Upper Cretaceous) Eutaw Formation in Mississippi, using a combination of X‐ray computed microtomography (microCT) and petrographic histological analyses. X‐ray microCT imaging and histopathologic features are consistent with multiple complete, oblique to comminuted, minimally displaced mid‐diaphyseal cortical fractures that produce a “butterfly” fragment fracture pattern, and secondary osteomyelitis with a bone fistula formation. We interpret this as evidence of blunt force trauma to the foot that could have resulted from intra‐ or interspecific competition or predator–prey interaction, and probably impaired the function of the metatarsal as a weight‐bearing element until the animal's death. Of particular interest is the apparent decoupling of endosteal and periosteal pathological bone deposition in MMNS VP‐6332, which produces transverse sections exhibiting homogenously thick endosteal pathological bone in the absence of localized periosteal reactive bone. These distribution and depositional patterns are used as criteria for ruling out a pathological origin in favor of a reproductive one for unusual endosteal bone in fossil specimens. On the basis of MMNS VP‐6332, we suggest caution in their use to substantiate a medullary bone identification in extinct archosaurians.  more » « less
Award ID(s):
1925973
PAR ID:
10442955
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
306
Issue:
7
ISSN:
1932-8486
Format(s):
Medium: X Size: p. 1864-1879
Size(s):
p. 1864-1879
Sponsoring Org:
National Science Foundation
More Like this
  1. Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis. 
    more » « less
  2. Abstract Interpretation of chemical zoning within igneous minerals is critical to many petrologic studies. Zoning in minerals, however, is commonly observed in thin sections or grain mounts, which are random 2D slices of a 3D system. Use of these 2D sections to infer 3D geometries requires a set of assumptions, often not directly tested, introduces several issues, and results in partial loss of zoning information. Computed X-ray microtomography (microCT) offers a way to assess 3D zoning in minerals at high resolution. To observe 3D mineral zoning using microCT, however, requires that zoning is observable as differences in X-ray attenuation. Sanidine, with its affinity for Ba in the crystal lattice, can display large, abrupt variations in Ba that are related to various magma reservoir processes. These changes in Ba also significantly change the X-ray attenuation coefficient of sanidine, allowing for discrete mineral zones to be mapped in 3D using microCT. Here we utilize microCT to show 3D chemical zoning within natural sanidines from a suite of volcanic eruptions throughout the geologic record. We also show that changes in microCT grayscale in sanidine are largely controlled by changes in Ba. Starting with 3D mineral reconstructions, we simulate thin-section making by generating random 2D slices across a mineral zone to show that slicing orientation alone can drastically change the apparent width and slope of composition transitions between different zones. Furthermore, we find that chemical zoning in sanidine can commonly occur in more complex geometries than the commonly interpreted concentric zoning patterns. Together, these findings have important implications for methodologies that rely on the interpretation of chemical zoning within minerals and align with previously published numerical models that show how chemical gradient geometries are affected by random sectioning during common sample preparation methods (e.g., thin sections and round mounts). 
    more » « less
  3. Not AvailaMineral imbalances in the body from chronic kidney disease can impact bone turnover and cause cortical bone loss. Synthetic salmon calcitonin is an FDA-approved treatment for bone fragility observed in diseases such as osteoporosis, and clinical trials have demonstrated a reduction in fractures compared to untreated individuals. This study documents the effects of calcitonin on cortical bone using an in vivo mouse model of chronic kidney disease. Serum BUN and PTH are reported. Calcitonin was found to impact at a dose of 50/IU/kg/day five times a week for five weeks. MicroCT was used to evaluate bone quantity measures, such as cortical porosity, thickness, bone area, and long bone structural geometric parameters. It was found that porosity, thickness, and bone geometry are affected by disease, but not by treatment at the specified regime. Small and wide-angle x-ray scattering (SAXS and WAXS) was used to obtain the nanostructure of the mineral-collagen-water composite, including mineral dimensions, -periodicity and collagen spacing. Data from thermogravimetric analysis (TgA) were used to quantify wt.% of the mineral, collagen, and bound water of each sample. Chronic kidney disease was found to decrease collagen spacing to increase mineral weight fractions, and to reduce loosely bound water. There were no changes from chronic kidney disease on the -Periodicity. Treatment increased the weight percent of collagen, with no effect on other bone quality parameters. 
    more » « less
  4. null (Ed.)
    Abstract Evolution has shaped the limbs of hoofed animals in specific ways. In artiodactyls, it is the common assumption that the metatarsal is composed of the fusion of digits III and IV, whereas the other three digits have been lost or are highly reduced. However, evidence from the fossil record and internal morphology of the metatarsal challenges these assumptions. Furthermore, only a few taxonomic groups have been analysed. In giraffes, we discovered that all five digits are present in the adult metatarsal and are highly fused and modified rather than lost. We examined high-resolution micro-computed tomography scans of the metatarsals of two mid and late Miocene giraffid fossils and the extant giraffe and okapi. In all the Giraffidae analysed, we found a combination of four morphologies: (1) four articular facets; (2) four or, in most cases, five separate medullary cavities internally; (3) a clear, small digit I; and (4) in the two fossil taxa of unknown genus, the presence of external elongated grooves where the fusions of digits II and V have taken place. Giraffa and Okapia, the extant Giraffidae, show a difference from all the extinct taxa in having more flattened digits tightly packed together, suggesting convergent highly fused digits despite divergent ecologies and locomotion. These discoveries provide evidence that enhances our understanding of how bones fuse and call into question current hypotheses of digit loss. 
    more » « less
  5. Kuzawa, Chris (Ed.)
    One of the most well-known yet least understood aspects of the 1918 influenza pandemic is the disproportionately high mortality among young adults. Contemporary accounts further describe the victims as healthy young adults, which is contrary to the understanding of selective mortality, which posits that individuals with the highest frailty within a group are at the greatest risk of death. We use a bioarchaeological approach, combining individual-level information on health and stress gleaned from the skeletal remains of individuals who died in 1918 to determine whether healthy individuals were dying during the 1918 pandemic or whether underlying frailty contributed to an increased risk of mortality. Skeletal data on tibial periosteal new bone formation were obtained from 369 individuals from the Hamann–Todd documented osteological collection in Cleveland, Ohio. Skeletal data were analyzed alongside known age at death using Kaplan–Meier survival and Cox proportional hazards analysis. The results suggest that frail or unhealthy individuals were more likely to die during the pandemic than those who were not frail. During the flu, the estimated hazards for individuals with periosteal lesions that were active at the time of death were over two times higher compared to the control group. The results contradict prior assumptions about selective mortality during the 1918 influenza pandemic. Even among young adults, not everyone was equally likely to die—those with evidence of systemic stress suffered greater mortality. These findings provide time depth to our understanding of how variation in life experiences can impact morbidity and mortality even during a pandemic caused by a novel pathogen. 
    more » « less